Core C++ 2025 i mobileye-
&) 19 Oct. 2025 :: Tel-Aviv

Adventures with Bazel

Viad Doviekaev

Little bit about us

What's Bazel and why would you care?
Bazel @ Mobileye

What it takes to transition & maintain

Little bit about us

Mobileye legacy codebase

Multi-platform embedded project: x86, MIPS, RISCV, custom SoC
Large scale: >200 repositories, >20 MLOC

Multi-language: C/C++, Python

Large portion of old legacy code, 20+ years

Open-source contributor: LLVM, Linux, ...

Mixed legacy build systems: make, cmake, waf

Build time: let's not even talk about it.

Transition to the new build system is not like re-writing some old legacy
component —it's more like archeological discovery expedition.

The old build system is not just an old component — but rather a knowledge base
accumulated many year of various people ideas as to how to make this system
work in various scenarios — so the purpose of the build system transition is more
of excavating all this knowledge and basically re-design it from scratch

1. Thereare alot of special/unusual use cases and plumbing that only few
original authors knows the purpose of

2. The number of "temporary” workarounds and "sure will fix it later" cases and
other "todo" is huge

3. The amount of dead code that nobody is dare to remove (see the litem)

Pros: you will know a lot of new people — who where the original code owners
then and could be big bosses now ©

What is Bazel

What is Bazel v

* Open-source build system developed by Google

Designed for large, complex software projects

Multi-platform, multi-language support

Python-based build language

Built-in support for Remote Build Execution (RBE)

Used by: ASML, BMW, LinkedIn, Lucid, Lyft, Nvidia, Pinterest, Tinder, Twitter (
migrating from Pants to Bazel), Uber, VMWare, Wix,
Open Source: Angular, Gerrit, Kubernetes, Selenium, Spotify, TensorFlow,

What is Bazel

Remote Build Execution API (REAPI)

Open standard for remote action execution [aiongletig, (RG]
w1 | (R = ;l AL
Lf_WJ 2] |\
Bazel only defines the API
action 2 [W’Wej s ?lel ‘i.r_mmej - i
A S, | Action Scheduler
Third-party implementations e o —r
== N (=T
action 3‘ -n-"quJ e uwot.\«gj e 777,_.9/ N \) j,,/" “

} \
=

B/

Idea:

« decomposite the large target into small pieces — actions (Ex. single C++compilation
unit) and distribute to many remote executors

» foreach small action provide access to inputs, tools, command line, environment if
needed, and gather outputs

Questions:
* how to provide inputs ? shared storage, direct copy? A:copy

* should we always provide all the inputs or give the tool the opportunity to detect? A:
no detection, not all tools can detect. Should be fully and statically provided before
running an action. Enforced by sandboxing

» should we always specify the expected output ? A: yep, built-in rules supply it under
the hood, custom rule should supply explicitly

What is Bazel

Dependencies definitions
- full and explicit static declaration of dependencies

- missing dependency detection through sandboxing

cc_library(

name = "debug_client",

srcs = [
"ipc/SocketClient.cpp"”,
"ipc/SocketClient.h",
"ipc/DebugClient.cpp”,

1,

hdrs = ["ipc/DebugClient.h"],

includes = ["ipc"],

deps = ["@com_google_protobuf//:protobuf"],

linkstatic = True,

target_compatible_with = ["@platforms//cpu:x86_64"],

visibility = ["//visibility:public"]

What is Bazel

Caching and incremental builds (
L

SHA256(Inputs + Action)

7 4 I——
| Gocompil ~
) scvitn
|

- content hash to detect changes Artien ‘
| sethctond Cache
- CAS and Action Cache /r __________________ o
- deterministic actions L "
Outputs: [fif..] —_— T
. . getAtifactCPRReR...) B
- always incremental build CAS ‘

- cachingthe test results? EE“'i/ —

- early cut-off

Questions:

» Should we copy the entire set of dependencies each time (even if the action was run before) ? A: no, inputs are
cached on the server side

* How itisstored, by name, path, timestamp? A: using content hash - introducing CAS storage

» What about caching the output (it could be used as an input or even tool !!! to further actions)? A: cache it as
well

» Is italways safe to cache the output artifacts? A: we assume predictable & reproducible actions (bit exact).

» What about the compilers, achievers, linkers:

* compilers are not reproducible by default (timestamps, absolute paths in debug info) A:
could be configured to behave deterministically: (gcc/clang: -frandom-seed, -fdebug-prefix-map.
msvc: /Brepro)

* linker are not reproducible by default (timestamps, non-stable symbol ordering, section
ordering, buildid). A: (-frandom-seed, --build-id)

* What if the tool doesn't produce any artifact but only output stream? (example: failed compilation) A: cacheit as
well — introducing AC

Implications and side effects:

« it doesn’t matter where the action is executed — enough to be executed once in the enterprise, everybody else will
get the output of the same action from cache

» almost all the builds are just incremental builds

Questions:

» if the output artifact could be used as tool for further actions, can we unit-tests as just another build target and then
runit? A: yep, if tests are reproducible/stable

» What about higher-level tests? A: yep, with some effort (software defined infrastructure if applicable)

« What if the change in the input doesn't cause the change in the output ? A: mention the early-cut off (next slide)

What is Bazel. Early Cut-off

. . oo]
Avoid unnecessary rebuilds when changes are made l
Scenario 1
generated_lib.h / lib.cpp / / app.cpp /
L — :

cosmetic change in “generate_headers.py |

Scenario 2 II gce -c (app) I

functional change in “generate_headers.py" causing cosmetic l
change in “generated_lib.h"

What is Bazel

External projects integration
- no need to keep external repos in SCM

- hermetic dependencies

local_repository(
name = "umd",
path = WORKSPACE + "proprietary/umd",

)
http_archive(
name = "gbenchmark",
sha256 ="bdefa4b03c32d1a27bd50e37ca466d8127c1688d834800c38f3c587a396188ee",
strip_prefix = "benchmark-1.5.3",
urls = ["https://github.com/google/benchmark/archive/v1.5.3.zip"],
)
Questions:
what if my target depends on external code? A: should be also hermetically
defined.

open source (3 — options, create bazel build files, build as legacy, use pre-build
binaries)

What is Bazel

Multiple language support

- builtin support for C/C++, Python, Java, Go, ...

- extensions for almost any other language

- generic rules for simple cmd-based actions
- customrules for anything else

- macros

- multi-language dependencies

cc_binary(

name = "phdl.cpython-37m-x86_64-1linux-gnu.so",
srcs = ["common/simpleDriverPythonModule.cpp”],
deps = [
"@python37//:python37",
"//buildenv/technology/common:headers”,
":phdl_solib"

5
linkshared = True,
visibility = ["//VMP:__subpackages_ "],
)

py_library(
name = "phdl_py",
data = [":phdl.cpython-37m-x86_64-1inux-gnu.so"],
imports = ["."],
visibility = ["//VMP:__subpackages__"],

Reflection and Queries
- query language

- aspectrules

What is Bazel

bazel query --noimplicit_deps 'deps(//:OpenEXR)' --output graph > graph.in
dot -Tpng < graph.in > graph.png

[

e
e
A i

o

=oom
[T
-
1
1
I
1

£]]
___ = [l = I - “m-
H ==-_ 68 BER_ B

I

1y g
t illi

i

— [EL) § ws
! = =
i

fl g

it -

i) Ee=ts

§
2 3
3 3
m
]

What is Bazel

Built-in Profiler

Tracking and debugging
Build Buddy

Bazel in Mobileye

Bazel in Mobileye - POC

» Transition of isolated complex project

Bubble up manual transition

Dedicated team for Bazel transition

Get the feeling by building existing project (LLVM)

CMake Build | Bazel Build Bazel Build Speed up
(Full) | CFull) (avg) (full)
LLVM (lic) ~10 min ~40 sec ~20 sec 15x
POC project ~7 min ~40 sec ~12 sec 10x

Build comparison: Dual Xeon server, 1.5 TB memory, 96 cores

Bazel build: remote execution, full cache.

Bazel in Mobileye — Scale Up

Distributing transition effort vs Dedicated Team. Lesson Learned
Developing automated translation tooling. Waf-to-Bazel

Allows large project parallel branching transition

Automatic generation of dependency specifications

Frequent pull-downs from master branches

Bazel in Mobileye — Current status

Transitioned code: ~10 MLOC
Dev team: >500
Build team: 3 dev + 1 IT support

Build times improvements: ~10x

Bazel in Mobileye

On-prem, based on BuildBarn services

600 TB CAS storage + 5 TB Action Cache
Sharded across 5 nodes

~100 GB Key Location Map for CAS (index)
~10 GB KLM for AC (index)

Load-balanced frontends with small local CAS

>15 K workers cores

Developers machines / clients

- storage
- frontend (+fastcache)

EPGD

EPG/IT HPC hosts / VDI

EPGF

- storage

- frontend (+fastcache)
- CAS
-AC

- scheduler
- browser

e

&

Buildbarn servers

[

EPGP

—
“ rontend + cas |

epgp101 - 2006bps —

200Gbps ‘

2006bp: epgpi102|

200Gbps

external

MB- 20065ps—]

200Gbps }
200Gbps | +-200Gbps —]

AN

K
r
¢
(
L ry
{ epgp103 ¢
(
U
[
L

ps—]10.154.12.x frontend
bb-rbe.mobileye.com
f——

AC + scheduler + browser/portal

epgp01=+b)l —1060ps |

~

))

- 1 main worker service
- 4 runners

- ubuntu22.04 osto
- ubuntu18.04 winkos
- rhel7.4
- rhel8.10 inkos)

(blinkos)

Buildbarn Workers, runners and cache shar]

epgb301
10Gbps

s EPGB

epgb302
106bps) eee

epgb311
10Gbps

epgb312) eee
106bps

» Typical bottlenecks are network bandwidth between storage nodes and

disk 10 on block devices

» Additional bottleneck seems to be a buildbarn tool limitation, probably due to
it being a cloud-driving tool it do not seems really optimized to run on 1monster

server

* Network bonding is used for high-throughput and redundancy on CAS
storage nodes (2x100GbE for external traffic + 2x100GbE for internal

traffic, replication)

Bazel - Summary

Bazel in Mobileye - POC Challenges

+ Steep learning curve during the transition

* Remote execution infrastructure maintenance

* Network becomes a bottleneck

« External open source non-Bazel projects integration
« Handling of volatile information

» Post-build handling

Bazel in Mobileye — Surprises

» Bazel code maintenance is easy
» Handling C/C++ headers dependencies is not a big problem

» Low average load on remote workers

Bazel - Summary

Who is it for

» Large-scale projects which may afford a dedicated build team + IT

Not worth it if
« Small or POC projects

« Small to medium single-language projects with "dedicated" build
systems (Rust with Cargo, Java with Maven/Gradle, Go with Mage, ...)

Ccache vs Bazel Cache

CCache:

supports only C/C++ single file compilation caching (no link, no custom targets)
some C/C++ compile time options are not supported (in direct mode)

wraps the compiler executable, manipulating its options (compiler sensitive ?)
sensitive to the workspace locations (requiring tuning of 'base_dir' for shared cache)
require shared location for distributed scenario

still rely on timestamps for include files (in addition to hash) — potential cache misses

Bazel Cache:

supports arbitrary targets (multi language environment)
not sensitive to workspace location (no need for NFS for distributed cache)
strong cache correctness guarantee (action cache + CAS cache)

built-in support for distributed builds for arbitrary targets

	Slide 1: Adventures with Bazel
	Slide 2
	Slide 3: Little bit about us
	Slide 4: Mobileye legacy codebase
	Slide 5: What is Bazel
	Slide 6: What is Bazel
	Slide 7: What is Bazel
	Slide 8: What is Bazel
	Slide 9: What is Bazel
	Slide 10: What is Bazel. Early Cut-off
	Slide 11: What is Bazel
	Slide 12: What is Bazel
	Slide 13: What is Bazel
	Slide 14: What is Bazel
	Slide 15: Bazel in Mobileye
	Slide 16: Bazel in Mobileye - POC
	Slide 17: Bazel in Mobileye – Scale Up
	Slide 18: Bazel in Mobileye – Current status
	Slide 19: Bazel in Mobileye
	Slide 20: Bazel - Summary
	Slide 21: Bazel in Mobileye - POC Challenges
	Slide 22: Bazel in Mobileye – Surprises
	Slide 23: Bazel - Summary
	Slide 24: Q&A
	Slide 25: Backup
	Slide 26: Ccache vs Bazel Cache

