@ @ Core C++ 2025

WC 19 0ct. 2025 -+ Tel-Aviv

When the Structs Align
... And When They Don't

Tomer Vromen

https://unsplash.com/@mike_castro_demaria?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/black-and-white-electric-guitar-AQIB4qsI8wI?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

yoMd

Time

Va

Va

Va

Va

Frere Jacques

Va Va

o

Va

Va

Yo

Frere Jacques

2 note

s f
Y4 note J [

2 note J i
Y4 note J [
Y8 note DAN

2 note J i

a note J [

Y8 note DAN \

1/ note S JIJ]

Yo Y8 Va o Y& Vs 14
fr— K
T — 7

l
—

13

Ye+Ve+Va +Vet+Ve+Vetla = 18

. k

v, I

—

o o
— 7

syncopation

15

‘F

—
O —

L

6

16

‘l

 —

o

17

.-_
l .
I I

.
/
L
_.L
[I
® e
m
L
Y/
.I.. _<\
| l
e
ol | 18
] (]
- TH® . T

A Jnote is beat-aligned if it starts at

a whole multiple of . from the start of the bar.

18

A Jnote is beat-aligned if it starts at

a whole multiple of . from the start of the bar.

Syncopated = not beat-aligned

19

An object x is N-byte-aligned if

its memory address is kN

where N = 2"

21

An object x is N-byte-aligned if
(uintptr_t)&x % (1 << n) ==

where N = 2"

22

About Me: Tomer Vromen — nIN9 1NN

Working @ D&AL Technologies
C++, Python
PowerFlex Ultra
We’re hiring
Haifa/Glil Yam/Be’er Sheva
-> Tomer.Vromen@dell.com

23

C++ Alignment
Rules

https://unsplash.com/@pastorthomasbwilson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/white-iphone-4s-on-brown-wooden-table-KvvAkN-ZKEM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Object types have alignment requirements which place
restrictions on the addresses at which an object of that type
may be allocated.

|basic.align]

25

An alignment is an implementation-defined integer
value representing the number of bytes between successive
addresses at which a given object can be allocated. |...]

Attempting to create an object in storage that does not

meet the alighment requirements of the object's type is
undefined behavior.

|basic.align]

26

An alignof expression yields the alignment requirement
of its operand type.

|expr.alignof]

In a declaration, an alignas(...) attribute can be used to
increase the default alighment requirement.

|dcl.align], paraphrased

27

Demo

https://godbolt.org/z/cM6exnMvo

28

https://godbolt.org/z/cM6exnMvo

Keeping Things Alighed

* Compiler ensures that all created objects are aligned according to
C++rules

* ABI = Abstract Binary Interface
 Each platform has a different ABI

* ABIl defines proper alignment
* Constraints & invariants

* The x86_64 Stack Frame: “The end of the input argument area
shall be aligned on a 16 byte boundary” (x86_64 ABI)

29

Keeping Things Alignhed

* Global variables:
« Compiler putsthem in aligned position

* Stack-allocated (local) objects

* ABI promises that stack is 16-byte aligned when control is transferred to
the function entry point.

* Higher alignment achieved by bitwise ANDing the stack register.

30

Keeping Things Alighed: Heap-Allocated

MyClass *p = new MyClass{"hello", 42};
1. Calloperator new(sizeof(MyClass))

2. Call c’tor with arguments
 The address (this) is the value returned by operator new

Calls to operator new(std::size t) are guaranteed to be aligned by

STDCPP_DEFAULT_NEW_ALIGNMENT___

For larger alignment requirements,
operator new(std::size t, std::align val t) iscalled.

(since C++17)

31

Ing the Rules

Break

Photo by Tom Wilson on Unsplash

https://unsplash.com/@pastorthomasbwilson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/silver-and-white-bracelet-on-white-surface-OFSl1o6gt6U?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Attempting to create an object in storage that does not
meet the alignment requirements of the object's type is
undefined behavior.

|basic.align]

https://godbolt.org/z/KWd8qga5gb

33

https://godbolt.org/z/KWd8qa5qb

L
!
|
{
'

f
{
‘
.
.
‘

[Y
. B - .

Photo by Tom Wilson on Unsplash

https://unsplash.com/@pastorthomasbwilson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/white-and-black-light-fixture-Em2hPK55o8g?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Alignment In Practice

Modern architectures don’t mind
CPU Allowed? unaligned memory access!

Recent x86, x86_64 (Intel, AMD) Yes Good

ARMv8+ Yes Good ——

POWER9+ (IBM) Yes Good

Alignment In Practice

Modern architectures don’t mind

CPU Allowed? unaligned memory access!

Recent x86, x86_64 (Intel, AMD) Yes Good
ARMv8+ Yes Good —
POWER9+ (IBM) Yes Good

x86, x86_64, Ivy Bridge & older Yes Depends

Alignment In Practice

Good
Good
Good
Depends

CPU

Recent x86, x86_64 (Intel, AMD) Yes
ARMv8+ Yes
POWER9+ (IBM) Yes
x86, x86_64, lvy Bridge & older Yes
POWERS No
SPARC I
MIPS I
ARM M-ser’

Breaks atomicity!

Modern architectures don’t mind
unaligned memory access!

—

Still relevant for older\embedded
architectures

RISC.y int prctl(PR_SET_UNmsigned long flag);

Pass PR_UNALIGN_NOPRINT to silently fix up unaligned user accesses, or
PR_UNALIGN_SIGBUS to generate SIGBUS on unaligned user access.

37

Alignment In Practice ™

Fundamental types

* ABI-defined

38

Alignment In Practice ™

Fundamental types:
alignof(T) == sizeof(T)

Natural alignment

ABl forx86 64 --->

* ABI-defined

Alignment

Type ® sizeof (bytes)
_Bool 1 |
char | 1
signed char
unsigned char | 1
short 2 2
signed short
unsigned short 2 2
int 4 4
Integral signed int
enumf i
unsigned int 4 4
long 8 8
signed long
long long
signed long long
unsigned long 8 8
unsigned long long 8 8
__int128' 16 16
signed __int128Tf 16 16
unsigned __int128T1 16 16
Pointer any-type = 8 8
any-type (x) ()
Floating- | float 4 4
point double 8 8
long double 16 16
__float128Tl 16 16

39

Alignment In Practice ™

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment

* ABI-defined

40

Alignment In Practice ™

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment

Compound types (struct, class, union):

The alignment is that of the largest non-static member

* ABI-defined

41

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

* ABI-defined

42

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

2 A A 4

%) 1 2 3 4 5 6 7 3 9 10

11

12

13

14

15

* ABI-defined

43

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

%) 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16

* ABI-defined

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

%) 1 2 3 4 5 6 7 3 9 1o 11 12 13 14 15 16 17

* ABI-defined

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

v. ¥

%) 1 2 3 4 5 6 7 3 9 10

11

12

13

14

15

16

17

18

* ABI-defined

46

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

%) 1 2 3 4 5 6 7 3 9 1o 11 12 13 14 15 16 17 18 19

* ABI-defined

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

8

9

106 11 12 13 14 15 16 17 18 19 20

* ABI-defined

48

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

8

9

106 11 12 13 14 15 16 17 18 19 20 21

* ABI-defined

49

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

8

9

10 11 12 13 14 15 16 17 18 19 20 21 22

* ABI-defined

50

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

* ABI-defined

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

8

9

sizeof(S) == 25 ???

106 11 12 13 14 15 16 17 18 19 20 21 22 23 24

* ABI-defined

52

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

sizeof(S) == 32

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

* ABI-defined

53

Struct Alighment

The whole is greater than the sum of its parts

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

* ABI-defined

54

Struct Alighment

The whole is greater than the sum of its parts

struct S
{
char a;
char e;
short c;
int b;
double d;
¥ sizeof(S) == 16

%) 1 2 3 4 5 6 7 8 9 106 11 12 13 14 15

* ABI-defined 55

Struct Alighment

The whole is greater than the sum of its parts

#pragma pack(push, 1)

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

#pragma pack(pop) sizeof(S) == 16

%) 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15

* ABIl + compiler extension

Struct Alighment

The whole is greater than the sum of its parts

s.b = 42;

#pragma PGCk(PUShJ 1) arm32 disassembly:
struct S =
{

char a;

int b;

short c;

double d;

char e;
}s
#pragma pack(pop)

%) 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15

* ABI + compiler extension

Struct Alighment

The whole is greater than the sum of its parts

#pragma pack(push, 1)

s.b = 42;

arm32 disassembly:

struct S

{
char a;
int b;
short c;
double d;
char e;

}s

#pragma pack(pop)

%) 1 2 3 4 5 6 7 3 9 10

movs r3, #0
orr r3, r3, #42
strb r3, [r7, #1]
movs r3, #0

e strb r3, [r7, #2]
movs r3, #0

a strb r3, [r7, #3]
movs r3, #0

a strb r3, [r7, #4]

13 14 15

* ABI + compiler extension

58

Struct Alighment

The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S

Only when accessing via

1 1

the struct!

{
char a;
int b;
short c;
double d;
char e;
¥

#pragma pack(pop)

12

s.b = 42;

arm32 disassembly:

movs r3, #0
orr r3, r3, #42
strb r3, [r7, #1]
movs r3, #0
strb r3, [r7, #2]
movs r3, #0
strb r3, [r7, #3]
movs r3, #0
strb r3, [r7, #4]
13 14 15

0 |1’ Q}»(?b{?b 5 6 7 8 9 10 11
>l e |2

S~— N
* ABI + compiler extension

59

SIMD

Single
Instruction
Multiple
Data

Intel’s documentation

--->

MOVAPD—Move Aligned Packed Double Precision Floating-Point Values

Opcode/ Op/En |64/32 bit |CPUID Feature | Description
Instruction Mode Flag
Support
66 OF 28 /r A VIV SSE2 Move aligned packed double precision floating-
28 point values from xmm2/mem to xmm1.
B VIV SSE2 Move aligned packed double precision floating-
point values from xmm1 to xmm2/mem.
A VIV AVX Move aligned packed double precision floating-

xmmZ2/mem to xmm1.

ed double precision floating-
xmm1 to xmm2/mem.

ed double precision floating-
ymm2/mem to ymm1.

ed double precision floating-
ymm1 to ymm2/mem.

ed double precision floating-

VMO\}APd xn;mi {k1}{z}, xmm2/m128 AVX512F) OR point values from xmm2/m128 to xmm1 using
AVX10.1 writemask k1.
EVEX.256.66.0F.W1 28 /r C VIV (AVX512VL AND | Move aligned packed double precision floating-
VMOVAPD ymm1 {k1}{z}, ymm2/m256 AVX512F) OR point values from ymm2/m256 to ymm1 using
AVX10.1 writemask k1.
EVEX.512.66.0F.W1 28 /r C VIV AVX512F Move aligned packed double precision floating-
VMOVAPD zmm1 {k1}z}, zmm2/m512 OR AVX10.1 point values from zmm2/m512 to zmm1 using
writemask k1.
EVEX.128.66.0F.W1 29 /r D VIV (AVX512VL AND | Move aligned packed double precision floating-
VMOVAPD xmm2/m128 {(k1}{z}, xmm1 AVX512F) OR point values from xmm1 to xmm2/m128 using
AVX10.1 writemask k1.
EVEX.256.66.0F.W1 29 /r D VIV (AVX512VL AND | Move aligned packed double precision floating-
VMOVAPD ymm2/m256 {k1}{z}, ymm1 AVX512F) OR point values from ymm1 to ymm2/m256 using
AVX10.1 writemask k1.
EVEX.512.66.0F.W1 29 /r D VIV AVX512F Move aligned packed double precision floating-
VMOVAPD zmm2/m512 {k1}{z}, zmm1 OR AVX10.1 point values from zmm1 to zmm2/m512 using 54

writemask k1.

SIMD

Single
Instruction
Multiple
Data

Intel’s documenta

MOVAPD—Move Aligned Packed Double Precision Floating-Point Values

Opcode/
Instruction

66 OF 28 /r
MOVAPD

;6/0‘/

Op/En 64/32 bit |CPUID Feature |Description
Mode Flag
Support
A VIV SSE2 Move aligned packed double precision floating-
28 point values from xmm2/mem to xmm1.
B VIV SSEZ Move aligned packed double precision floating-
m1 point values from xmm1 to xmm2/mem.
A VIV AVX

Move aligned packed double precision floating-

The unaligned version
must be slower...

“When the source or destination operand is a memory operand,
the operand must be aligned”
[...]

“To move double precision floating-point values to and from
unaligned memory locations, use the (V)MOVUPD instruction.”

xmmZ2/mem to xmm]1.

ked double precision floating-
xmm1 to xmm2/mem.

ked double precision floating-
ymmZ2/mem to ymm1.

ked double precision floating-
ymm1 to ymm2/mem.

ked double precision floating-
xmm2/m128 to xmm1 using

ked double precision floating-
ymmZ2/m256 to ymm1 using

AVATULT

VWITLETTIGSRA KT,

C VIV AVX512F Move aligned packed double precision floating-

n2/m512 OR AVX10.1 point values from zmm2/m512 to zmm1 using
writemask k1.

D VIV (AVX512VL AND |Move aligned packed double precision floating-

mm]1 AVX512F) OR point values from xmm1 to xmm2/m128 using
AVX10.1 writemask k1.

D VIV (AVX512VL AND | Move aligned packed double precision floating-

' Kz}, ymm1 AVX512F) OR point values from ymm1 to ymm2/m256 using
AVX10.1 writemask k1.

D VIV AVX512F Move aligned packed double precision floating-

OR AVX10.1

point values from zmm1 to zmm2/m512 using 61
writemask k1.

SIMD

Single

Instruction
Multiple

Data

Intel’s documenta

MOVAPD—Move Aligned Packed Double Precision Floating-Point Values

Opcode/
Instruction

66 OF 28 /r
MOVAPD

2

.

Op/En 64/32 bit |CPUID Feature |Description
Mode Flag
Support
A VIV SSE2 Move aligned packed double precision floating-
28 point values from xmm2/mem to xmm1.
B VIV SSE2 Move aligned packed double precision floating-

point values from xmm1 to xmm2/mem.

A

“When the

“To move
unaligned %

Floating point XMM and YMM instructions

Instruction

Move instruc-
tions

MOVAPS/D
VMOVAPS/D
MOVAPS/D
MOVUPS/D
VMOVAPS/D
VMOVUPS/D
MOVAPS/D
MOVUPS/D

The unaligned version

must be

slower...

‘Operands

X, X
Y.y

Xx,m128
y,m256

m128,x

Hops
fused
ﬁomam

Hops
unfused
domain

pops each port

p015
p015

p23
p23

p237 p4

T7R?;<:ipro-
cal
through

Latency put Comments

0-1 0.25 | may eliminate
0-1 0.25 | may eliminate
2 0.5
3 0.5 AVX

3 | Source: Agner Fog

(AVX512VL AND | Move aligned packed double precision floating-
AVX512F) OR point values from xmm1 to xmm2/m128 using
AVX10.1 writemask k1.
D VIV (AVX512VL AND | Move aligned packed double precision floating-
AVX512F) OR point values from ymm1 to ymm2/m256 using
AVX10.1 writemask k1.
D VIV AVX512F Move aligned packed double precision floating-
OR AVX10.1 point values from zmm1 to zmm2/m512 using 5 5
writemask k1.

Alignment s
Still Relevant!

(Even on Modern Platforms)

Photo by Matteo Vistocco on Unsplash

https://unsplash.com/@mrsunflower94?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@mrsunflower94?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/people-riding-boat-on-body-of-water-Dph00R2SwFo?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Cache Lines

Cache

Cache Lines

Cache

Cache Lines

Cache

Cache Lines & Locking

I N N
.

B

Cache Lines & Locking

g e[e]
n

B

* To be precise, this is handled by the
cache coherency mechanism.

68

Cache Lines & Locking

_w
III‘III

B

Benchmark

#pragma pack(push, 1)

struct StructAligned struct StructUnaligned
{ {

int a = 42; int a = 42;

char b = "\0'; char b = "\0';
}s }s

#pragma pacR(pop)

%) 1 2 3 4 5 6 7 %) 1 2 3 4

Benchmark

#pragma pack(push, 1)

struct AtomicAligned struct AtomicUnaligned
{ {
atomic<int> a = 42; atomic<int> a = 42;
char b = "\0'; char b = "\0';
}s }s

#pragma pacR(pop)

%) 1 2 3 4 5 6 7 %) 1 2 3 4

71

Benchmark

template <typename T> BENCHMARK (Runner<StructAligned>);
static void Runner(State& state) BENCHMARK (Runner<StructUnaligned>);
{ BENCHMARK (Runner<AtomicAligned>);
constexpr size t N = 100; BENCHMARK (Runner<AtomicUnaligned>);
T s[N];
for (auto _ : state) {

for (int i = @0; i < N; ++i) {
int t = ++s[i].a;
DoNotOptimize(t);

72

Benchmark

Runner<StructAligned> 39.8 ns 39.7 ns

73

Benchmark

Benchmark Time CPU
Runner<StructAligned> 39.8 ns Cache line split: 78% slower
Runner<StructUnaligned> 70.8 ns 70.6 ns

74

Benchmark

Benchmark Time CPU
Runner<StructAligned> 39.8 ns Cache line split: 78% slower
Runner<StructUnaligned> 70.8 ns 70_A _n<

Runner<AtomicAligned> 669 ns Atomic write: 9.5x slower

75

Benchmark

Runner<StructAligned>
Runner<StructUnaligned>
Runner<AtomicAligned>
Runner<AtomicUnaligned>

Time CPU

39.8 ns Cache line split: 78% slower
70.8 ns 70 A nc

669 ns Atomic write: 9.5x slower
3443049 ns e e

Atomic write with cache line
split: 5000x slower!

Split lock: locks the whole memory bus!

76

Cache Lines & Locking & Multithread

L fe] 1 e

B

Cache Lines & Locking & Multithread

False sharing a

Ha

EEE

Cache Lines & Locking & Multithread

HENEN Ll struct alignas(64) Data {...};

B

79

Benchmark: False Sharing

LITTTTT]

al a| a 4

~E 3l B

C

Benchmark: False Sharing

struct AtomicAligned4
{

atomic<int> a = 42;

s

sizeof(Aligned4) == 4

alignas(64)
struct AtomicAligned64
{

atomic<int> a = 42;

s

sizeof(Aligned64) == 64

81

Benchmark: False Sharing

Runner<AtomicAligned4> 1208372885 ns

Runner<AtomicAligned64> , 802320730 ns

Avoiding false sharing: 33.6% faster

260510 ns
221603 ns

82

Benchmark: False Sharing, No Locks

C

~E 3l B

Benchmark: False Sharing, No Locks

struct Aligned4

{
int a = 42;

s

sizeof(Aligned4) == 4

alignas(64)
struct Aligned64

{
int a = 42;

s

sizeof(Aligned64) == 64

84

Benchmark: False Sharing, No Locks

Runner<Aligned4> 726761 ns

Runner<Aligned64i/////:22if'634758 ns

Avoiding false sharing: 12.5% faster

76867 ns
73379 ns

85

Alignment - Yes or No?

 C++ alignment rules are simplistic, and maybe outdated
* Undefined behavior - Implementation-defined?

* Only really needed for embedded
* Modern CPUs don’t mind unaligned data too much

* C++ will pad structs to enforce alignment
 Good if you need it, but wasteful otherwise
* Reorder members to reduce padding
* Use #pragma pack to decrease alignment, carefully

* Cache alignment does matter for performance!
e Multi-threaded: use alignas(64) to avoid false sharing

87

Thanky.

Thanks to Amir Kirsh

	Slide 1: When the Structs Align … And When They Don’t
	Slide 2: Musical Notation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: About Me: Tomer Vromen – תומר פרומן
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Demo
	Slide 29: Keeping Things Aligned
	Slide 30: Keeping Things Aligned
	Slide 31: Keeping Things Aligned: Heap-Allocated
	Slide 32: Breaking the Rules
	Slide 33
	Slide 34: Alignment in Practice
	Slide 35: Alignment In Practice
	Slide 36: Alignment In Practice
	Slide 37: Alignment In Practice
	Slide 38: Alignment In Practice ☆
	Slide 39: Alignment In Practice ☆
	Slide 40: Alignment In Practice ☆
	Slide 41: Alignment In Practice ☆
	Slide 42: Struct Alignment The whole is greater than the sum of its parts
	Slide 43: Struct Alignment The whole is greater than the sum of its parts
	Slide 44: Struct Alignment The whole is greater than the sum of its parts
	Slide 45: Struct Alignment The whole is greater than the sum of its parts
	Slide 46: Struct Alignment The whole is greater than the sum of its parts
	Slide 47: Struct Alignment The whole is greater than the sum of its parts
	Slide 48: Struct Alignment The whole is greater than the sum of its parts
	Slide 49: Struct Alignment The whole is greater than the sum of its parts
	Slide 50: Struct Alignment The whole is greater than the sum of its parts
	Slide 51: Struct Alignment The whole is greater than the sum of its parts
	Slide 52: Struct Alignment The whole is greater than the sum of its parts
	Slide 53: Struct Alignment The whole is greater than the sum of its parts
	Slide 54: Struct Alignment The whole is greater than the sum of its parts
	Slide 55: Struct Alignment The whole is greater than the sum of its parts
	Slide 56: Struct Alignment The whole is greater than the sum of its parts
	Slide 57: Struct Alignment The whole is greater than the sum of its parts
	Slide 58: Struct Alignment The whole is greater than the sum of its parts
	Slide 59: Struct Alignment The whole is greater than the sum of its parts
	Slide 60: SIMD
	Slide 61: SIMD
	Slide 62: SIMD
	Slide 63: Alignment is Still Relevant!
	Slide 64: Cache Lines
	Slide 65: Cache Lines
	Slide 66: Cache Lines
	Slide 67: Cache Lines & Locking
	Slide 68: Cache Lines & Locking
	Slide 69: Cache Lines & Locking
	Slide 70: Benchmark
	Slide 71: Benchmark
	Slide 72: Benchmark
	Slide 73: Benchmark
	Slide 74: Benchmark
	Slide 75: Benchmark
	Slide 76: Benchmark
	Slide 77: Cache Lines & Locking & Multithread
	Slide 78: Cache Lines & Locking & Multithread
	Slide 79: Cache Lines & Locking & Multithread
	Slide 80: Benchmark: False Sharing
	Slide 81: Benchmark: False Sharing
	Slide 82: Benchmark: False Sharing
	Slide 83: Benchmark: False Sharing, No Locks
	Slide 84: Benchmark: False Sharing, No Locks
	Slide 85: Benchmark: False Sharing, No Locks
	Slide 86: Summary
	Slide 87: Alignment – Yes or No?
	Slide 88: Thank you.

