
Core C++ 2025
19 Oct. 2025 :: Tel-Aviv

When the Structs Align
… And When They Don’t

Tomer Vromen

By Rogelio Bernal Andreo, CC BY-SA 3.0
1

Photo by Mike Castro Demaria on Unsplash

https://unsplash.com/@mike_castro_demaria?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/black-and-white-electric-guitar-AQIB4qsI8wI?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Time

Pi
tc

h

3

4

5

¼ ¼ ¼ ¼

6

7

¼ ¼ ½ ¼ ¼ ½

8

9

½ note 𝅗𝅥

¼ note 𝅘𝅥

𝅗𝅥
𝅘𝅥

10

½ note 𝅗𝅥

¼ note 𝅘𝅥
⅛ note 𝅘𝅥𝅮 🎜🎝
𝅗𝅥
𝅘𝅥

11

½ note 𝅗𝅥

¼ note 𝅘𝅥
⅛ note 𝅘𝅥𝅮 🎜🎝

Τ1 16 note 𝅘𝅥𝅯
𝅗𝅥
𝅘𝅥

12

⅛ ⅛ ¼ ⅛ ⅛ ⅛ ¼

13

⅛ + ⅛ + ¼ + ⅛+ ⅛ + ⅛+¼ = 1⅛

14

syncopation

15

16

17

A 𝅘𝅥 note is beat-aligned if it starts at

a whole multiple of 𝅘𝅥 from the start of the bar.

18

A 𝅘𝅥 note is beat-aligned if it starts at

a whole multiple of 𝅘𝅥 from the start of the bar.

Syncopated = not beat-aligned

19

An object x is 𝑵-byte-aligned if

its memory address is 𝑘𝑁

where 𝑁 = 2𝑛

21

An object x is 𝑵-byte-aligned if

(uintptr_t)&x % (1 << n) == 0

where 𝑁 = 2𝑛

22

About Me: Tomer Vromen – תומר פרומן

Working @
C++, Python
PowerFlex Ultra

We’re hiring
 Haifa/Glil Yam/Be’er Sheva
 → Tomer.Vromen@dell.com

23

Photo by Tom Wilson on Unsplash

C++ Alignment
Rules

https://unsplash.com/@pastorthomasbwilson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/white-iphone-4s-on-brown-wooden-table-KvvAkN-ZKEM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Object types have alignment requirements which place
restrictions on the addresses at which an object of that type
may be allocated.

[basic.align]

25

An alignment is an implementation-defined integer
value representing the number of bytes between successive
addresses at which a given object can be allocated. […]

Attempting to create an object in storage that does not
meet the alignment requirements of the object's type is
undefined behavior.

[basic.align]

26

An alignof expression yields the alignment requirement
of its operand type.

[expr.alignof]

In a declaration, an alignas(...) attribute can be used to
increase the default alignment requirement.

[dcl.align], paraphrased

27

Demo

https://godbolt.org/z/cM6exnMvo

28

https://godbolt.org/z/cM6exnMvo

Keeping Things Aligned

• Compiler ensures that all created objects are aligned according to
C++ rules

• ABI = Abstract Binary Interface
• Each platform has a different ABI

• ABI defines proper alignment
• Constraints & invariants

• The x86_64 Stack Frame: “The end of the input argument area
shall be aligned on a 16 byte boundary” (x86_64 ABI)

29

Keeping Things Aligned

• Global variables:
• Compiler puts them in aligned position

• Stack-allocated (local) objects
• ABI promises that stack is 16-byte aligned when control is transferred to

the function entry point.
• Higher alignment achieved by bitwise ANDing the stack register.

30

Keeping Things Aligned: Heap-Allocated

MyClass *p = new MyClass{"hello", 42};
1. Call operator new(sizeof(MyClass))
2. Call c’tor with arguments

• The address (this) is the value returned by operator new

Calls to operator new(std​::​size_t) are guaranteed to be aligned by
__STDCPP_DEFAULT_NEW_ALIGNMENT__

For larger alignment requirements,
operator new(std​::​size_t, std​::​align_val_t) is called. (since C++17)

31

Breaking the Rules
Photo by Tom Wilson on Unsplash

https://unsplash.com/@pastorthomasbwilson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/silver-and-white-bracelet-on-white-surface-OFSl1o6gt6U?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Attempting to create an object in storage that does not
meet the alignment requirements of the object's type is
undefined behavior.

[basic.align]

https://godbolt.org/z/KWd8qa5qb
33

https://godbolt.org/z/KWd8qa5qb

Alignment in Practice
Photo by Tom Wilson on Unsplash

https://unsplash.com/@pastorthomasbwilson?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/white-and-black-light-fixture-Em2hPK55o8g?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Alignment In Practice

CPU Allowed? Performance

Recent x86, x86_64 (Intel, AMD) Yes Good

ARMv8+ Yes Good

POWER9+ (IBM) Yes Good

Modern architectures don’t mind
unaligned memory access!

35

Alignment In Practice

CPU Allowed? Performance

Recent x86, x86_64 (Intel, AMD) Yes Good

ARMv8+ Yes Good

POWER9+ (IBM) Yes Good

x86, x86_64, Ivy Bridge & older Yes Depends

Modern architectures don’t mind
unaligned memory access!

36

Alignment In Practice

CPU Allowed? Performance

Recent x86, x86_64 (Intel, AMD) Yes Good

ARMv8+ Yes Good

POWER9+ (IBM) Yes Good

x86, x86_64, Ivy Bridge & older Yes Depends

POWER8 No ---

SPARC No ---

MIPS Depends ?

ARM M-series (embedded) No ---

RISC-V Depends ---

Modern architectures don’t mind
unaligned memory access!

Still relevant for older\embedded
architectures

int prctl(PR_SET_UNALIGN, unsigned long flag);

Pass PR_UNALIGN_NOPRINT to silently fix up unaligned user accesses, or
PR_UNALIGN_SIGBUS to generate SIGBUS on unaligned user access.

Breaks atomicity!

37

Alignment In Practice ☆

Fundamental types

☆ ABI-defined 38

Alignment In Practice ☆

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment

ABI for x86_64 --->

39☆ ABI-defined

Alignment In Practice ☆

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment

40☆ ABI-defined

Alignment In Practice ☆

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment

Compound types (struct, class, union):

The alignment is that of the largest non-static member

41☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

42☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

43☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

44☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

45☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

46☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

47☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

48☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

49☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

50☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

51☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

sizeof(S) == 25 ???

52☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sizeof(S) == 32

53☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 int b;

 short c;

 double d;

 char e;

};

54☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

struct S

{

 char a;

 char e;

 short c;

 int b;

 double d;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sizeof(S) == 16

55☆ ABI-defined

Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
 char a;
 int b;
 short c;
 double d;
 char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sizeof(S) == 16

56☆ ABI + compiler extension

Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
 char a;
 int b;
 short c;
 double d;
 char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

57☆ ABI + compiler extension

arm32 disassembly:

s.b = 42;

movs r3, #0

orr r3, r3, #42

strb r3, [r7, #1]

movs r3, #0

strb r3, [r7, #2]

movs r3, #0

strb r3, [r7, #3]

movs r3, #0

strb r3, [r7, #4]

arm32 disassembly:

s.b = 42;

Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
 char a;
 int b;
 short c;
 double d;
 char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

58☆ ABI + compiler extension

Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
 char a;
 int b;
 short c;
 double d;
 char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

♪ ♪ ♪ ♪

1 2 3 4

59☆ ABI + compiler extension

1

2

3

4

movs r3, #0

orr r3, r3, #42

strb r3, [r7, #1]

movs r3, #0

strb r3, [r7, #2]

movs r3, #0

strb r3, [r7, #3]

movs r3, #0

strb r3, [r7, #4]

arm32 disassembly:

s.b = 42;

Only when accessing via
the struct!

SIMD

Single
Instruction
Multiple
Data

“When the source or destination operand is a memory operand,
the operand must be aligned”

Intel’s documentation --->

60

Intel’s documentation --->

SIMD

Single
Instruction
Multiple
Data

“When the source or destination operand is a memory operand,
the operand must be aligned”

[…]
“To move double precision floating-point values to and from

unaligned memory locations, use the (V)MOVUPD instruction.”

The unaligned version
must be slower…

right? NO!
61

Intel’s documentation --->

SIMD

Single
Instruction
Multiple
Data

“When the source or destination operand is a memory operand,
the operand must be aligned”

[…]
“To move double precision floating-point values to and from

unaligned memory locations, use the (V)MOVUPD instruction.”

The unaligned version
must be slower…

right? NO!

Source: Agner Fog

62

Alignment is
Still Relevant!
(Even on Modern Platforms)

Photo by Matteo Vistocco on Unsplash

https://unsplash.com/@mrsunflower94?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@mrsunflower94?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/people-riding-boat-on-body-of-water-Dph00R2SwFo?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Cache

64 bytes Data

Cache Lines

64 bytes64 bytes Data

64

Cache

Cache Lines

64 bytes64 bytes Data

65

Cache

Cache Lines

64 bytes64 bytes Data 64 bytes64 bytes Data

66

64 bytes Data

Cache Lines & Locking

64 bytes

A

67

64 bytes64 bytes Data

Cache Lines & Locking

A

* To be precise, this is handled by the
cache coherency mechanism.

68

64 bytes64 bytes Data

Cache Lines & Locking

A

69

Benchmark

struct StructAligned

{

 int a = 42;

 char b = '\0';

};

#pragma pack(push, 1)

struct StructUnaligned

{

 int a = 42;

 char b = '\0';

};

#pragma pack(pop)

0 1 2 3 4 5 6 7 0 1 2 3 4

70

Benchmark

struct AtomicAligned

{

 atomic<int> a = 42;

 char b = '\0';

};

#pragma pack(push, 1)

struct AtomicUnaligned

{

atomic<int> a = 42;

 char b = '\0';

};

#pragma pack(pop)

0 1 2 3 4 5 6 7 0 1 2 3 4

71

Benchmark

template <typename T>

static void Runner(State& state)

{

 constexpr size_t N = 100;

T s[N];

 for (auto _ : state) {

 for (int i = 0; i < N; ++i) {

 int t = ++s[i].a;

 DoNotOptimize(t);

 }

 }

}

BENCHMARK(Runner<StructAligned>);

BENCHMARK(Runner<StructUnaligned>);

BENCHMARK(Runner<AtomicAligned>);

BENCHMARK(Runner<AtomicUnaligned>);

72

Benchmark

Benchmark Time CPU

Runner<StructAligned> 39.8 ns 39.7 ns

73

Benchmark

Benchmark Time CPU

Runner<StructAligned> 39.8 ns 39.7 ns

Runner<StructUnaligned> 70.8 ns 70.6 ns

Cache line split: 78% slower

74

Benchmark

Benchmark Time CPU

Runner<StructAligned> 39.8 ns 39.7 ns

Runner<StructUnaligned> 70.8 ns 70.6 ns

Runner<AtomicAligned> 669 ns 667 ns

Cache line split: 78% slower

Atomic write: 9.5x slower

75

Benchmark

Benchmark Time CPU

Runner<StructAligned> 39.8 ns 39.7 ns

Runner<StructUnaligned> 70.8 ns 70.6 ns

Runner<AtomicAligned> 669 ns 667 ns

Runner<AtomicUnaligned> 3443049 ns 3434070 ns

Cache line split: 78% slower

Atomic write with cache line
split: 5000x slower!

Atomic write: 9.5x slower

Split lock: locks the whole memory bus!

76

64 bytesData

Cache Lines & Locking & Multithread

A

77

64 bytesDataData

Cache Lines & Locking & Multithread

A B

False sharing

78

64 bytesDataData

Cache Lines & Locking & Multithread

A B

struct alignas(64) Data {...};

79

64 bytes

Benchmark: False Sharing

A B

80

D
ata

C D

D
ata

D
ata

D
ata

D
ata

D
ata

D
ata

D
ata

Benchmark: False Sharing

struct AtomicAligned4

{

 atomic<int> a = 42;

};

sizeof(Aligned4) == 4

alignas(64)

struct AtomicAligned64

{

 atomic<int> a = 42;

};

sizeof(Aligned64) == 64

81

Benchmark: False Sharing

Benchmark Time CPU

Runner<AtomicAligned4> 1208372885 ns 260510 ns

Runner<AtomicAligned64> 802320730 ns 221603 ns

82

Avoiding false sharing: 33.6% faster

64 bytes

Benchmark: False Sharing, No Locks

A B

83

D
ata

C D

D
ata

D
ata

D
ata

Benchmark: False Sharing, No Locks

struct Aligned4

{

 int a = 42;

};

sizeof(Aligned4) == 4

alignas(64)

struct Aligned64

{

 int a = 42;

};

sizeof(Aligned64) == 64

84

Benchmark: False Sharing, No Locks

Benchmark Time CPU

Runner<Aligned4> 726761 ns 76867 ns

Runner<Aligned64> 634758 ns 73379 ns

85

Avoiding false sharing: 12.5% faster

Summary

Alignment – Yes or No?

• C++ alignment rules are simplistic, and maybe outdated
• Undefined behavior → Implementation-defined?

• Only really needed for embedded
• Modern CPUs don’t mind unaligned data too much
• C++ will pad structs to enforce alignment

• Good if you need it, but wasteful otherwise
• Reorder members to reduce padding
• Use #pragma pack to decrease alignment, carefully

• Cache alignment does matter for performance!
• Multi-threaded: use alignas(64) to avoid false sharing

87

Thank you.
Thanks to Amir Kirsh

Tomer.Vromen@dell.com

	Slide 1: When the Structs Align … And When They Don’t
	Slide 2: Musical Notation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: About Me: Tomer Vromen – תומר פרומן
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Demo
	Slide 29: Keeping Things Aligned
	Slide 30: Keeping Things Aligned
	Slide 31: Keeping Things Aligned: Heap-Allocated
	Slide 32: Breaking the Rules
	Slide 33
	Slide 34: Alignment in Practice
	Slide 35: Alignment In Practice
	Slide 36: Alignment In Practice
	Slide 37: Alignment In Practice
	Slide 38: Alignment In Practice ☆
	Slide 39: Alignment In Practice ☆
	Slide 40: Alignment In Practice ☆
	Slide 41: Alignment In Practice ☆
	Slide 42: Struct Alignment The whole is greater than the sum of its parts
	Slide 43: Struct Alignment The whole is greater than the sum of its parts
	Slide 44: Struct Alignment The whole is greater than the sum of its parts
	Slide 45: Struct Alignment The whole is greater than the sum of its parts
	Slide 46: Struct Alignment The whole is greater than the sum of its parts
	Slide 47: Struct Alignment The whole is greater than the sum of its parts
	Slide 48: Struct Alignment The whole is greater than the sum of its parts
	Slide 49: Struct Alignment The whole is greater than the sum of its parts
	Slide 50: Struct Alignment The whole is greater than the sum of its parts
	Slide 51: Struct Alignment The whole is greater than the sum of its parts
	Slide 52: Struct Alignment The whole is greater than the sum of its parts
	Slide 53: Struct Alignment The whole is greater than the sum of its parts
	Slide 54: Struct Alignment The whole is greater than the sum of its parts
	Slide 55: Struct Alignment The whole is greater than the sum of its parts
	Slide 56: Struct Alignment The whole is greater than the sum of its parts
	Slide 57: Struct Alignment The whole is greater than the sum of its parts
	Slide 58: Struct Alignment The whole is greater than the sum of its parts
	Slide 59: Struct Alignment The whole is greater than the sum of its parts
	Slide 60: SIMD
	Slide 61: SIMD
	Slide 62: SIMD
	Slide 63: Alignment is Still Relevant!
	Slide 64: Cache Lines
	Slide 65: Cache Lines
	Slide 66: Cache Lines
	Slide 67: Cache Lines & Locking
	Slide 68: Cache Lines & Locking
	Slide 69: Cache Lines & Locking
	Slide 70: Benchmark
	Slide 71: Benchmark
	Slide 72: Benchmark
	Slide 73: Benchmark
	Slide 74: Benchmark
	Slide 75: Benchmark
	Slide 76: Benchmark
	Slide 77: Cache Lines & Locking & Multithread
	Slide 78: Cache Lines & Locking & Multithread
	Slide 79: Cache Lines & Locking & Multithread
	Slide 80: Benchmark: False Sharing
	Slide 81: Benchmark: False Sharing
	Slide 82: Benchmark: False Sharing
	Slide 83: Benchmark: False Sharing, No Locks
	Slide 84: Benchmark: False Sharing, No Locks
	Slide 85: Benchmark: False Sharing, No Locks
	Slide 86: Summary
	Slide 87: Alignment – Yes or No?
	Slide 88: Thank you.

