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½ note 𝅗𝅥 

¼ note 𝅘𝅥
⅛ note 𝅘𝅥𝅮 🎜🎝
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A 𝅘𝅥 note is beat-aligned if it starts at

a whole multiple of 𝅘𝅥 from the start of the bar.
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A 𝅘𝅥 note is beat-aligned if it starts at

a whole multiple of 𝅘𝅥 from the start of the bar.

Syncopated = not beat-aligned
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An object x is 𝑵-byte-aligned if

its memory address is 𝑘𝑁

where 𝑁 = 2𝑛
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An object x is 𝑵-byte-aligned if

(uintptr_t)&x % (1 << n) == 0

where 𝑁 = 2𝑛
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Object types have alignment requirements which place 
restrictions on the addresses at which an object of that type 
may be allocated.

[basic.align]
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An alignment is an implementation-defined integer 
value representing the number of bytes between successive 
addresses at which a given object can be allocated. […]

Attempting to create an object in storage that does not 
meet the alignment requirements of the object's type is 
undefined behavior.

[basic.align]
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An alignof expression yields the alignment requirement 
of its operand type.

[expr.alignof]

In a declaration, an alignas(...) attribute can be used to 
increase the default alignment requirement.

[dcl.align], paraphrased
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Demo

https://godbolt.org/z/cM6exnMvo
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Keeping Things Aligned

• Compiler ensures that all created objects are aligned according to 
C++ rules

• ABI = Abstract Binary Interface
• Each platform has a different ABI

• ABI defines proper alignment
• Constraints & invariants

• The x86_64 Stack Frame: “The end of the input argument area 
shall be aligned on a 16 byte boundary” (x86_64 ABI)
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Keeping Things Aligned

• Global variables:
• Compiler puts them in aligned position

• Stack-allocated (local) objects
• ABI promises that stack is 16-byte aligned when control is transferred to 

the function entry point.
• Higher alignment achieved by bitwise ANDing the stack register.
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Keeping Things Aligned: Heap-Allocated

MyClass *p = new MyClass{"hello", 42};
1. Call operator new(sizeof(MyClass))
2. Call c’tor with arguments

• The address (this) is the value returned by operator new

Calls to operator new(std​::​size_t) are guaranteed to be aligned by 
__STDCPP_DEFAULT_NEW_ALIGNMENT__

For larger alignment requirements,
operator new(std​::​size_t, std​::​align_val_t) is called. (since C++17)
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Breaking the Rules
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Attempting to create an object in storage that does not 
meet the alignment requirements of the object's type is 
undefined behavior.

[basic.align]

https://godbolt.org/z/KWd8qa5qb
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Alignment in Practice
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Alignment In Practice

CPU Allowed? Performance

Recent x86, x86_64 (Intel, AMD) Yes Good

ARMv8+ Yes Good

POWER9+ (IBM) Yes Good

Modern architectures don’t mind 
unaligned memory access!
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Alignment In Practice

CPU Allowed? Performance

Recent x86, x86_64 (Intel, AMD) Yes Good

ARMv8+ Yes Good

POWER9+ (IBM) Yes Good

x86, x86_64, Ivy Bridge & older Yes Depends

Modern architectures don’t mind 
unaligned memory access!
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Alignment In Practice

CPU Allowed? Performance

Recent x86, x86_64 (Intel, AMD) Yes Good

ARMv8+ Yes Good

POWER9+ (IBM) Yes Good

x86, x86_64, Ivy Bridge & older Yes Depends

POWER8 No ---

SPARC No ---

MIPS Depends ?

ARM M-series (embedded) No ---

RISC-V Depends ---

Modern architectures don’t mind 
unaligned memory access!

Still relevant for older\embedded 
architectures

int prctl(PR_SET_UNALIGN, unsigned long flag); 

Pass PR_UNALIGN_NOPRINT to silently fix up unaligned user accesses, or 
PR_UNALIGN_SIGBUS to generate SIGBUS on unaligned user access.

Breaks atomicity!
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Alignment In Practice ☆

Fundamental types

☆ ABI-defined 38



Alignment In Practice ☆

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment

ABI for x86_64 --->

39☆ ABI-defined



Alignment In Practice ☆

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment
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Alignment In Practice ☆

Fundamental types:

alignof(T) == sizeof(T)

Natural alignment

Compound types (struct, class, union):

The alignment is that of the largest non-static member

41☆ ABI-defined



Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

42☆ ABI-defined



Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

sizeof(S) == 25 ???

52☆ ABI-defined



Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sizeof(S) == 32

53☆ ABI-defined



Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    int b;

    short c;

    double d;

    char e;

};

54☆ ABI-defined



Struct Alignment
The whole is greater than the sum of its parts

struct S

{

    char a;

    char e;

    short c;

    int b;

    double d;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sizeof(S) == 16

55☆ ABI-defined



Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
    char a;
    int b;
    short c;
    double d;
    char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sizeof(S) == 16

56☆ ABI + compiler extension



Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
    char a;
    int b;
    short c;
    double d;
    char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

57☆ ABI + compiler extension

arm32 disassembly:

s.b = 42;



movs    r3, #0

orr     r3, r3, #42

strb    r3, [r7, #1]

movs    r3, #0

strb    r3, [r7, #2]

movs    r3, #0

strb    r3, [r7, #3]

movs    r3, #0

strb    r3, [r7, #4]

arm32 disassembly:

s.b = 42;

Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
    char a;
    int b;
    short c;
    double d;
    char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

58☆ ABI + compiler extension



Struct Alignment
The whole is greater than the sum of its parts

#pragma pack(push, 1)
struct S
{
    char a;
    int b;
    short c;
    double d;
    char e;
};
#pragma pack(pop)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

♪ ♪ ♪ ♪

1 2 3 4

59☆ ABI + compiler extension

1

2

3

4

movs    r3, #0

orr     r3, r3, #42

strb    r3, [r7, #1]

movs    r3, #0

strb    r3, [r7, #2]

movs    r3, #0

strb    r3, [r7, #3]

movs    r3, #0

strb    r3, [r7, #4]

arm32 disassembly:

s.b = 42;

Only when accessing via 
the struct!



SIMD

Single
Instruction
Multiple
Data

“When the source or destination operand is a memory operand, 
the operand must be aligned”

Intel’s documentation --->
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Intel’s documentation --->

SIMD

Single
Instruction
Multiple
Data

“When the source or destination operand is a memory operand, 
the operand must be aligned”

[…]
“To move double precision floating-point values to and from 

unaligned memory locations, use the (V)MOVUPD instruction.”

The unaligned version 
must be slower… 

right? NO!
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Intel’s documentation --->

SIMD

Single
Instruction
Multiple
Data

“When the source or destination operand is a memory operand, 
the operand must be aligned”

[…]
“To move double precision floating-point values to and from 

unaligned memory locations, use the (V)MOVUPD instruction.”

The unaligned version 
must be slower… 

right? NO!

Source: Agner Fog
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Alignment is 
Still Relevant!
(Even on Modern Platforms)

Photo by Matteo Vistocco on Unsplash 

https://unsplash.com/@mrsunflower94?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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Cache

64 bytes Data

Cache Lines

64 bytes64 bytes Data
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Cache

Cache Lines

64 bytes64 bytes Data
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Cache

Cache Lines

64 bytes64 bytes Data 64 bytes64 bytes Data
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64 bytes Data

Cache Lines & Locking

64 bytes

A
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64 bytes64 bytes Data

Cache Lines & Locking

A

* To be precise, this is handled by the
cache coherency mechanism.

68



64 bytes64 bytes Data

Cache Lines & Locking

A
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Benchmark

struct StructAligned

{

    int a = 42;

    char b = '\0';

};

#pragma pack(push, 1)

struct StructUnaligned

{

    int a = 42;

    char b = '\0';

};

#pragma pack(pop)

0 1 2 3 4 5 6 7 0 1 2 3 4
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Benchmark

struct AtomicAligned

{

   atomic<int> a = 42;

    char b = '\0';

};

#pragma pack(push, 1)

struct AtomicUnaligned

{

atomic<int> a = 42;

    char b = '\0';

};

#pragma pack(pop)

0 1 2 3 4 5 6 7 0 1 2 3 4
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Benchmark

template <typename T>

static void Runner(State& state)

{

    constexpr size_t N = 100;

T s[N];

    for (auto _ : state) {

        for (int i = 0; i < N; ++i) {

            int t = ++s[i].a;

            DoNotOptimize(t);

        }

    }

}

BENCHMARK(Runner<StructAligned>);

BENCHMARK(Runner<StructUnaligned>);

BENCHMARK(Runner<AtomicAligned>);

BENCHMARK(Runner<AtomicUnaligned>);
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Benchmark

-----------------------------------------------------------

Benchmark                              Time             CPU

-----------------------------------------------------------

Runner<StructAligned>               39.8 ns         39.7 ns
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Benchmark

-----------------------------------------------------------

Benchmark                              Time             CPU

-----------------------------------------------------------

Runner<StructAligned>               39.8 ns         39.7 ns

Runner<StructUnaligned>             70.8 ns         70.6 ns

Cache line split: 78% slower
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Benchmark

-----------------------------------------------------------

Benchmark                              Time             CPU

-----------------------------------------------------------

Runner<StructAligned>               39.8 ns         39.7 ns

Runner<StructUnaligned>             70.8 ns         70.6 ns

Runner<AtomicAligned>                669 ns          667 ns

Cache line split: 78% slower

Atomic write: 9.5x slower
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Benchmark

-----------------------------------------------------------

Benchmark                              Time             CPU

-----------------------------------------------------------

Runner<StructAligned>               39.8 ns         39.7 ns

Runner<StructUnaligned>             70.8 ns         70.6 ns

Runner<AtomicAligned>          669 ns          667 ns

Runner<AtomicUnaligned>    3443049 ns      3434070 ns

Cache line split: 78% slower

Atomic write with cache line 
split: 5000x slower!

Atomic write: 9.5x slower

Split lock: locks the whole memory bus!
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64 bytesData

Cache Lines & Locking & Multithread

A
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64 bytesDataData

Cache Lines & Locking & Multithread

A B

False sharing
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64 bytesDataData

Cache Lines & Locking & Multithread

A B

struct alignas(64) Data {...};
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64 bytes

Benchmark: False Sharing

A B
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Benchmark: False Sharing

struct AtomicAligned4

{

   atomic<int> a = 42;

};

sizeof(Aligned4) == 4

alignas(64)

struct AtomicAligned64

{

    atomic<int> a = 42;

};

sizeof(Aligned64) == 64
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Benchmark: False Sharing

-----------------------------------------------------

Benchmark                        Time             CPU

-----------------------------------------------------

Runner<AtomicAligned4>  1208372885 ns       260510 ns

Runner<AtomicAligned64>  802320730 ns       221603 ns

82

Avoiding false sharing: 33.6% faster 



64 bytes

Benchmark: False Sharing, No Locks

A B
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Benchmark: False Sharing, No Locks

struct Aligned4

{

    int a = 42;

};

sizeof(Aligned4) == 4

alignas(64)

struct Aligned64

{

 int a = 42;

};

sizeof(Aligned64) == 64
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Benchmark: False Sharing, No Locks

-----------------------------------------------------

Benchmark                        Time             CPU

-----------------------------------------------------

Runner<Aligned4>            726761 ns        76867 ns

Runner<Aligned64>           634758 ns        73379 ns

85

Avoiding false sharing: 12.5% faster 



Summary



Alignment – Yes or No?

• C++ alignment rules are simplistic, and maybe outdated
• Undefined behavior → Implementation-defined?

• Only really needed for embedded
• Modern CPUs don’t mind unaligned data too much
• C++ will pad structs to enforce alignment

• Good if you need it, but wasteful otherwise
• Reorder members to reduce padding
• Use #pragma pack to decrease alignment, carefully

• Cache alignment does matter for performance!
• Multi-threaded: use  alignas(64)  to avoid false sharing
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Thank you.
Thanks to Amir Kirsh

Tomer.Vromen@dell.com
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