
Core C++ 2025
19 Oct. 2025 :: Tel-Aviv

Virtual Tables Unveiled:
Exploitation and Mitigation in

Practice
Sivan Zohar-Kotzer

Agenda

* Vtables & Polymorphism

* CTF Challenges & Analysis

* Security Mitigations

Section I — Vtables & Polymorphism

What is a vtable?

* A per-class table of function pointers for virtual functions.

* Enables runtime polymorphism: correct method chosen by actual object
type.

* Every object stores a hidden vptr pointing to its class’s vtable.

What is a
vtable?

What is a
vtable?

A *aaa
f() of A

g() of B

Vtble B

What is a
vtable?

Every object stores a vptr in its first 8
bytes.

B’s constructor sets the vptr to vtable B.

Even though a is an A*, it points to vtable
B.

Runtime decides: a->f() → A::f, a->g()
→ B::g.

Section II — CTF Challenge

CTF : UAF – pwnable.kr

CTF : UAF – pwnable.kr
The code currently
calls

CTF : UAF – pwnable.kr
We want the code to
call

Primitive 1:
We can Cause UAF.
1. Alloc h = new Human
2. delete h
3. Do Other things
4. h->introduce

How malloc Works?

● Allocations goes to buckets of certain size
● Free this piece - goes to the top of the free list
● Another allocation gets back the head

How malloc Works?

We allocate SZ bytes

How malloc Works?

We print the contents

The address new returned

How malloc Works?

We free the object

How malloc Works?

We got the same address! Most content remained (sans
header)!

We used the same size, and got the same address! Also, X remained ^

How malloc Works? Not in Mac

In mac we get the same address - but different values

Quick recap

First primitive: Use-After-Free

Step 1: Allocate an object, then delete it

Step 2: Trigger other server actions
 → Freed memory was reused by malloc, letting us interact with the
deleted object

How? Primitive 1: pollute
free mem

Write Primitive to Object
Immediately free’d

We pollute free memory
Hence can modify Human object which
is used after free!

We’ll add 8 bytes to its vptr, and instead of
Introduce
It’d grab give_shell!

Section III — Security Mitigations & Defenses

Common Mitigations

* ASLR: randomize addresses to break reliable targets.

* CFI (control flow integrity): enforces at runtime that indirect control transfers
may only go to approved targets

The gist of the exploitation

Without CFI

A a;
rax = &a;

rcx = *(u64*)&a;
Aka points to first
entry in vtable

A *a
f()

g()

vtbl

Without CFI

Now a->vtbl
Points to the
SECOND entry
in vtable

Without CFI

A *a

vtbl

f()

g()

Without CFI

A a;
rdi = &a;

Without CFI

A a;
rdi = &a;
rax = a->tbl;
(a->tbl[0])();

Mitigated

Initialize vptr of this

Increment a->vptr by 8

CFI PROTECTION, compare the
vptr with the compiler-known vptr

CFI PROTECTION crash it it’s not

What if we have two vtables?

No simple compare anymore.

Compiler checks if vptr is within a valid range.

Uses offsets, shifts, and bit tricks to verify it.

Goal: ensure vptr points to an allowed vtable.

Huh?! What is it?

<< 0x3b?

Searching 0x3b in CFI design docs

<< 0x3b?

The compiler controls the vtable location!

● The compiler controls where vtables live in memory.

● It can place them adjacent and use clever bit patterns for quick
validation.

● The exact logic is complex — but by checking the offset of a vptr
from a known one,
 we can tell whether it points to a legitimate vtable.

Final Recap – What We Learned

● Vtables: enable runtime polymorphism via the vptr.
● Primitive 1: Use-After-Free → overwrite freed object.
● Heap reuse: malloc returned the same address → vptr hijack.
● Vtable shift: redirect call to give_shell.
● Mitigations:

○ ASLR randomizes memory layout.
○ CFI enforces valid control-flow targets.

● Today’s compilers: group vtables and use bit checks to detect
tampering.

→ From polymorphism to exploitation — and how modern defenses
stop it.

Any questions?

