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Atomics very briefly

Atomics are shared variables which all threads can modify safely.



Atomics very briefly

Atomics are shared variables which all threads can modify safely.

load T std::atomic::load();

store void std::atomic::store(T desired);

(rmw:)

exchange T std::atomic::exchange(T desired);

cmpxchg bool std::atomic::compare_exchange *(T& expected, T
desired);

fetch_and * T std::atomic::fetch_add(T arg);



What's in it for us?

Often have better scalability for simple operations.

Benchmark 1: locked_ring_buffer_spsc.exe
Time ( x g): t : , System:
Range ( - iJb

Benchmark 2: lockless_ring_buffer_spsc.exe
Time ( * g): + [User: , System:

Range ( - B

Summary
ran
times faster than

(win11i7-12700h 32GB 3200mhz ram)



I'm all ears...
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Our Baby Memory Model

1. Loads and stores are totally ordered.



Our Baby Memory Model

1. Loads and stores are totally ordered. Well, everything is in program order.



Our Baby Memory Model

1. Loads and stores are totally ordered. Well, everything is in program order.
2. Nothing!



But hey it's slow

When ordering is enforced:
- Some units will just stall

- Memory will be practically locked

Falch




But hey it's slow

When ordering is enforced:
- some compute units will just stall

- Memory will be practically locked

Falch




Pipelining

1. Fetch
2. Decode
3. Execute
1 fetch decode execute
2 fetch decode | execute
3 fetch decode execute
instruction
> time
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“‘Modern Intel and AMD architectures use variable depth pipelines
ranging between 14 and 19 stages on 22-32 nm lithographic processes.”
(2014... | was still munching crayons!)




What does it mean really?

We do want for stuff to look like they’re ordered. (We are used to think
sequentially!)



What does it mean really?

We do want for stuff to look like they’re ordered. (We are used to think
sequentially!)

The CPU promises us a few things:
Stores and loads to the same locations will not be reordered.

Earlier loads will not reorder with newer stores.



What does it mean really?

Stores and loads to the same locations will not be reordered.

This allows Store-Load reordering if they are not to the same location:

Cstore [y] =1
load [X]



But hey it's slow

When ordering is enforced:

some compute units will just stall
Memory will be practically locked
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Store buffer

- Step 0 — %EAX = 2
%EBX = 3
(empty) > %EAX = add %EBX
%EAX = mul %EBX
(empty) store %EAX -> @X
(empty)
Memory:

X=0



Store buffer

- Step 1 - %EAX = 5
%EBX =3
(empty) %EAX = add %EBX
-> %EAX = mul %EBX
(empty) store %EAX -> @X
(empty)
Memory:

X=0



Store buffer

(empty)

(empty)

(empty)

- Step 2 - %EAX = 15

%EBX =3
%EAX =add %EBX

%EAX = mul %EBX
-> store %EAX -> @X

Memory:
X=0



Store buffer

@X=15

(empty)

(empty)

--- Step 3 -

%EAX = add %EBX
%EAX = mul %EBX
store %EAX -> @X

Memory:
X=0

%EAX =15
%EBX =3



Store buffer

@X=15

(empty)

(empty)

- Step ... -

%EAX = add %EBX
%EAX = mul %EBX
store %EAX -> @X

Memory:
X=0

%EAX =15
%EBX =3



store->load forwarding

@X=15

(empty)

(empty)

- Step ...+1 -

%EAX = add %EBX
%EAX = mul %EBX
store %EAX -> @X

-> load %ebx <- @X

Memory:
X=0

%EAX =15
%EBX =3



Store buffer implications
Now because we log our speculative stores, we can reorder:

store [x] = 1
load [y]



Thread 1
Thread 2

store [x] = 1 store [y] = 1
load [y] load [X]



Thread 1
Thread 2

store [x] = 1 store [y] = 1
load [y] ;O load [x] ; ...Also 0?7



Another example

T1:

Cmpxchg word mem = 0x0000
-> 0x0101

T3:
Write byte mem = 0x03

Read mem to reg

T2:

Cmpxchg word mem 0x0101 -
> 0x0202

The cache coherency can get
0x0203 but reg in T3 can be 0x0103
We got value that was never in the
cache.
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Simplified C++ memory model

- We can’t have two regular operations on the same variable whan at least one
of them is write.

- Atomic operations make sure a single operation will work as intended.

- If we want some sequence of operations to work one after another we need
synchronization.



Relaxed

Do not impose any Synchronization.
Need to be very careful with them as they can be unintuitive.

Within a single thread, relaxed atomics cannot appear to execute out of program
order.



Relaxed

Example:
/l Thread 1: /l Thread 2:

r1 = y.load(std::memory_order_relaxed): / A r2 = x.load(std::memory_order_relaxed); // C

x.store(r1, std::memory_order_relaxed); // B y.store(42, std::memory_order_relaxed); // D

Allowed to be r1 ==r2 == 42

https:/en.cppreference.com/w/cpp/atomic/memory_order.html



https://en.cppreference.com/w/cpp/atomic/memory_order.html

Relaxed since C++14

Circular reasoning is disallowed.

/I Thread 1 /I Thread 2
r1 = y.load(std::memory_order_relaxed); r2 = x.load(std::memory_order_relaxed);
if (r1 == 1) x.store(1, std::memory_order_relaxed); if (r2 == 1) y.store(1, std::memory_order_relaxed);

x=1->r1=1->r2=1



Release and acquire

If the acquire sees the release store then:
The release happens before the acquire

Everything that happened before the release the acquire sees

Only matching* release and acquire threads will synchronize



The problem with release and acquire

Thread 1 Thread 2
X=1: y=1;
Thread 3 Thread 4

if(x==1&%&y=0) if(y==1&& x=0)
print( “x first” ); print( “y first");



sequential consistency

The very simplistic model, everything is total ordered




So why should we even bother?

Benchmark 1: lockless_ring_buffer_spsc.exe
Time (mean % o): 78.6 ms % [User:
Range (min .. s 285.5 ms ..

Benchmark 2: fine_grained_lockless_ring_buffer_spsc.exe
Time (mean = o¢): .6 ms % [User:
Range (min .. )i 90.5 ms ..

Summary
fine_grained_Llockless_ring_buffer_spsc.exe
times faster than




So how does the cpu do it?

Intel:

All rmw are Seq CST, store and loads are Release and Acquire.
armvy’:

Has only memory barriers and LL SC.

armva8:

Has special instruction for acquire and release. Seq CST = acq_rel

https://godbolt.org/z/cogn7jalG



https://godbolt.org/z/coqn7ja1G

Small note: LL/SC

LL r, [addr] — loads the value at addr into r and sets a reservation on that
address.

SC [addr], r2 — attempts to store r2 into addr.

(Succeeds only if the reservation is still valid.)



Some common patterns



Lightweight synchronization

void producer() {
data = 42;
ready.store(true, std::memory_order_release);

void consumer() A
while (!ready.load(std::memory_order_acquire));
std: :cout << data; // guaranteed to see 42



Locks

class SpinLock {
std::atomic_flag locked{ };
public:
void lock( ) {
while (locked.test_and_set(std: :memory_order_acquire)

void unlock( ) A
locked.clear(std: :memory_order_release):

*don't write locks like that, goto Igor and ben lecture to learn
how to



CAS loops

1. Read a shared memory location V (the expected value).
2. Compute a new value V’ based on the current state.
3. Attempt to atomically set the memory location to V' only if it still equals the

expected value.
4. If the CAS fails (another thread changed the memory), repeat from step 1.



CAS loops

1. Read a shared memory location V (the expected value).
2. Compute a new value V’ based on the current state.
3. Attempt to atomically set the memory location to V' only if it still equals the

expected value.
4. If the CAS fails (another thread changed the memory), repeat from step 1.

Dynamic value based on state -> CAS



CAS loops

new_node = new Node(val, head);
while (!'head.compare_exchange_weak(new_node->next, new_node));

Both fetch_and_* and exchange can be implemented with simple cas loop.

This is the way the new fetch_min/max are implemented in x86



Takeaways

- We can make stuff go faster!



Takeaways

- We can make stuff go faster!
- Micro-architecture is interesting! ...And sometimes useful.



END


http://www.youtube.com/watch?v=FvzYMyeTdQc

END

But we have time...


http://www.youtube.com/watch?v=FvzYMyeTdQc

MEMORY
MODEL



http://www.youtube.com/watch?v=FvzYMyeTdQc

Bonus 1 - sat solver

SAT (Boolean satisfiability) is a central problem in theoretical CS academic.
It asks whether a formula of AND of OR-clauses of boolean variables have a

solution.
It is the first problem proven to be NP-complete.



Example

Given this code to get mutual exclusion
std: :atomic<int> x = 0, y = 0;

void thread() {
int tid = std::this_thread::get_tid();

white (1) {
x = tid;
if (y && y !'= tid) continuve;
y = tid;
if (x && x !'= tid) continve;
/* critical section */

}



solution

https://colab.research.qgoogle.com/drive/1Ep8dU4dF 1 GKCW7qlfLys4 OcNWY EgcAXO?usp=sharing



https://colab.research.google.com/drive/1Ep8dU4dF1GKCW7qlfLys4OcNWYEgcAXO?usp=sharing

Pros and cons

Pro:
Finds concrete counterexamples.
There is multiple encoders(CBMC,KLEE) and solvers(z3).
Cons:
Can blow up for large depths.
Can make mistakes encoding the constraints.

In the end it can’t really solve just say that in some number of steps there isn't
bug.



Bonus 2 - CAS and the aba problem

void LL::push_front(int val)

{
auto new_node = new Node{val, this->head};
while (!this->head.compare_exchange_weak(new_node->next, new_node));
}
avto LL::pop_front()
{
Node* ret_ptr;
Node* next_ptr;
do {
ret_ptr = head.load();
next_ptr = ret_ptr->next;
} while(!this->head.compare_exchange_weak(ret_ptr, next_ptr));
delete ret_ptr;
}

https://godbolt.org/z/3a5e538eG



https://godbolt.org/z/3a5e538eG

Bonus 3 - volatile vs atomics

Volatile are just saying reads and writes will not be optimized.

Atomic variable on the other hand can be optimized but do impose
synchronization.
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