'@’ Core C++ 2025

Order! Order!

Shar-yashuv Giat
Ofek Shochat

#whoami

#whoami

48 Years of Microprocessor Trend Data

1D4 ._......................._.E............................j............. ol 2 = :.....

| |
b am

Transistors
{thousands)

Single-Thread
Performance 5
| (SpecINT x 107)

cH I M .a'n'ﬂ's‘-*“-‘l-l.? Frequency (MHz)

* Typical Power
Yol {(Watts)

Number of
‘| Logical Cores

1870 1980 1880 2000 2010
Year

2020

Onginal claka u p o the year 2010 colkeiad and plofied by M. Horowilz, F. Labonte, O, Shacham, K. Olukobun, L. Hammond, and C. Batten

Hew plot and data collected for 2010-2019 by K. Rupp

48 Years of Microprocessor Trend Data

5 L ads Single-Thread
10 ﬂ'-.. N Performance .
10t | “’* | (Specl <19
10° M Iy h*“ﬂ ||lu Frequency (MHz) T
P s | * Typical Power
1!'3'2 _ *' T) {".*'u’atts}
1 4 : Number of
10 P | Logical Cores
Poow]
100 | ,: I SN
i i | i
1870 1980 1980 2000 2010 2020
Year

Onginal data up o the year 2010 colketed and plotter] by M. Horowitz, F. Laboete, O Shacham, K. Olukiotun, L. Hammerd, and C. Batten
Haw plot and data colacted for 20102019 by K. Rupp

48 Years of Microprocessor Trend Data

v

&0 »

3.

Transistors
{thousands)

Single-Thread
Performance 5
| (SpecINT x 107)

-- Frequenc
I iy Freduensy

$17?

* Typical Power
A atts)
‘* Number of

‘| Logical Cores

1870

1980

2000
Year

2010

2020

Onginal data up o the year 2010 colketed and plotter] by M. Horowitz, F. Laboete, O Shacham, K. Olukiotun, L. Hammerd, and C. Batten
Haw plot and data colacted for 20102019 by K. Rupp

Atomics very briefly

Atomics are shared variables which all threads can modify safely.

Atomics very briefly

Atomics are shared variables which all threads can modify safely.

load T std::atomic::load();

store void std::atomic::store(T desired);

(rmw:)

exchange T std::atomic::exchange(T desired);

cmpxchg bool std::atomic::compare_exchange *(T& expected, T
desired);

fetch_and * T std::atomic::fetch_add(T arg);

What's in it for us?

Often have better scalability for simple operations.

Benchmark 1: locked_ring_buffer_spsc.exe
Time (x g): t : , System:
Range (- iJb

Benchmark 2: lockless_ring_buffer_spsc.exe
Time (* g): + [User: , System:

Range (- B

Summary
ran
times faster than

(win11i7-12700h 32GB 3200mhz ram)

I'm all ears...

MICRO-
ARCHITECTURE

Our Baby Memory Model

1. Loads and stores are totally ordered.

Our Baby Memory Model

1. Loads and stores are totally ordered. Well, everything is in program order.

Our Baby Memory Model

1. Loads and stores are totally ordered. Well, everything is in program order.
2. Nothing!

But hey it's slow

When ordering is enforced:
- Some units will just stall

- Memory will be practically locked

Falch

But hey it's slow

When ordering is enforced:
- some compute units will just stall

- Memory will be practically locked

Falch

Pipelining

1. Fetch
2. Decode
3. Execute
1 fetch decode execute
2 fetch decode | execute
3 fetch decode execute
instruction
> time

OoOE

J 1
I L

[1

Program
execution
order
(in instructions) m M
sub$2,81,83 | IM RogI 1: DM |~
[=
and $12, 52, $5 IM I HRegl_|
ol
or $13, $6, 52 M Reg|_]
add $14, 52, 52 M
sw $15, 100(52)
v

OoOE

wB

m @ =

- FPU | FPU | FPU

)
-

1 | 1

sSuoljels uoljeAlasay

g

|10/

IF

OoOE

“—Add
c
o
® L Br
IE | 1D/ _5
Reg g
-§~FPO FPU | FPU
[
§"Mul
[+
- LSU

wB

“‘Modern Intel and AMD architectures use variable depth pipelines
ranging between 14 and 19 stages on 22-32 nm lithographic processes.”
(2014... | was still munching crayons!)

What does it mean really?

We do want for stuff to look like they’re ordered. (We are used to think
sequentially!)

What does it mean really?

We do want for stuff to look like they’re ordered. (We are used to think
sequentially!)

The CPU promises us a few things:
Stores and loads to the same locations will not be reordered.

Earlier loads will not reorder with newer stores.

What does it mean really?

Stores and loads to the same locations will not be reordered.

This allows Store-Load reordering if they are not to the same location:

Cstore [y] =1
load [X]

But hey it's slow

When ordering is enforced:

some compute units will just stall
Memory will be practically locked

L2\ L=\

{Beanch Urlt

////“‘\

CPU Packag
cPuU 0/ ,-" cpPu1l)/ ,._" CcPu 2) / cpu 3)
‘ Local Cache ‘ Local Cache ‘ Local Cache ‘ Local Cache :—+ Shared L3 Cache .
Cnh erence Bus / Intercnnnect Main Memory (DRAM)
M "\-. .-

N

CPU Package
CPU 0/ / cPu 1) / cpu 2) / cPu 3)
| Local Cache Local Cache Local Cache Local Cache '
(line: Modified) (line: Shared) (line: Shared) (line: Shared) [> Shared L3 Cache
R — o L~ -~ | N
Write — Broadcast Imralidﬂjil / \
e atoVa s YT V"W'_\I
_{ Coherence Bus / Interconnect /) Main Memory (DRAM)
‘“‘\Mmmww-ﬂ

N

/ / CPU Package /

cpu 0/ / cPU 1) / cPU 2) / cPU3)

| Local Cache Local Cache Local Cache Local Cache '
(line: Modified) (line: Shared) (line: Shared) (line: Shared) [> Shared L3 Cache
71 | K A A ' \
Write — Broadcast Inwlidate\w %‘a“dmwwlidate 1 \
e s il) e,
\ Coherence Bus [Interconnect 3 Main Memory (DRAM)

k\-*"‘—/‘uex_,h L SN W W

o
// / CPU Package
o /| [y /| [/| [%\

Local Cache Local Cache Local Cache Local Cache
(line: Modified) (line: Invalid) (line: Invalid) {Ifne Invalid)

7] | |

Write —+ Broadcast Invalidate \:rwalidate line //invalidate line Invalidate line \

Coherence Bus / Interccnne;tj Main Memory (DRAM)
e e N

Shared L3 Cache .

Store buffer

- Step 0 — %EAX = 2
%EBX = 3
(empty) > %EAX = add %EBX
%EAX = mul %EBX
(empty) store %EAX -> @X
(empty)
Memory:

X=0

Store buffer

- Step 1 - %EAX = 5
%EBX =3
(empty) %EAX = add %EBX
-> %EAX = mul %EBX
(empty) store %EAX -> @X
(empty)
Memory:

X=0

Store buffer

(empty)

(empty)

(empty)

- Step 2 - %EAX = 15

%EBX =3
%EAX =add %EBX

%EAX = mul %EBX
-> store %EAX -> @X

Memory:
X=0

Store buffer

@X=15

(empty)

(empty)

--- Step 3 -

%EAX = add %EBX
%EAX = mul %EBX
store %EAX -> @X

Memory:
X=0

%EAX =15
%EBX =3

Store buffer

@X=15

(empty)

(empty)

- Step ... -

%EAX = add %EBX
%EAX = mul %EBX
store %EAX -> @X

Memory:
X=0

%EAX =15
%EBX =3

store->load forwarding

@X=15

(empty)

(empty)

- Step ...+1 -

%EAX = add %EBX
%EAX = mul %EBX
store %EAX -> @X

-> load %ebx <- @X

Memory:
X=0

%EAX =15
%EBX =3

Store buffer implications
Now because we log our speculative stores, we can reorder:

store [x] = 1
load [y]

Thread 1
Thread 2

store [x] = 1 store [y] = 1
load [y] load [X]

Thread 1
Thread 2

store [x] = 1 store [y] = 1
load [y] ;O load [x] ; ...Also 0?7

Another example

T1:

Cmpxchg word mem = 0x0000
-> 0x0101

T3:
Write byte mem = 0x03

Read mem to reg

T2:

Cmpxchg word mem 0x0101 -
> 0x0202

The cache coherency can get
0x0203 but reg in T3 can be 0x0103
We got value that was never in the
cache.

MEMORY
MODEL

Simplified C++ memory model

- We can’t have two regular operations on the same variable whan at least one
of them is write.

- Atomic operations make sure a single operation will work as intended.

- If we want some sequence of operations to work one after another we need
synchronization.

Relaxed

Do not impose any Synchronization.
Need to be very careful with them as they can be unintuitive.

Within a single thread, relaxed atomics cannot appear to execute out of program
order.

Relaxed

Example:
/l Thread 1: /l Thread 2:

r1 = y.load(std::memory_order_relaxed): / A r2 = x.load(std::memory_order_relaxed); // C

x.store(r1, std::memory_order_relaxed); // B y.store(42, std::memory_order_relaxed); // D

Allowed to be r1 ==r2 == 42

https:/en.cppreference.com/w/cpp/atomic/memory_order.html

https://en.cppreference.com/w/cpp/atomic/memory_order.html

Relaxed since C++14

Circular reasoning is disallowed.

/I Thread 1 /I Thread 2
r1 = y.load(std::memory_order_relaxed); r2 = x.load(std::memory_order_relaxed);
if (r1 == 1) x.store(1, std::memory_order_relaxed); if (r2 == 1) y.store(1, std::memory_order_relaxed);

x=1->r1=1->r2=1

Release and acquire

If the acquire sees the release store then:
The release happens before the acquire

Everything that happened before the release the acquire sees

Only matching* release and acquire threads will synchronize

The problem with release and acquire

Thread 1 Thread 2
X=1: y=1;
Thread 3 Thread 4

if(x==1&%&y=0) if(y==1&& x=0)
print(“x first”); print(“y first");

sequential consistency

The very simplistic model, everything is total ordered

So why should we even bother?

Benchmark 1: lockless_ring_buffer_spsc.exe
Time (mean % o): 78.6 ms % [User:
Range (min .. s 285.5 ms ..

Benchmark 2: fine_grained_lockless_ring_buffer_spsc.exe
Time (mean = o¢): .6 ms % [User:
Range (min ..)i 90.5 ms ..

Summary
fine_grained_Llockless_ring_buffer_spsc.exe
times faster than

So how does the cpu do it?

Intel:

All rmw are Seq CST, store and loads are Release and Acquire.
armvy’:

Has only memory barriers and LL SC.

armva8:

Has special instruction for acquire and release. Seq CST = acq_rel

https://godbolt.org/z/cogn7jalG

https://godbolt.org/z/coqn7ja1G

Small note: LL/SC

LL r, [addr] — loads the value at addr into r and sets a reservation on that
address.

SC [addr], r2 — attempts to store r2 into addr.

(Succeeds only if the reservation is still valid.)

Some common patterns

Lightweight synchronization

void producer() {
data = 42;
ready.store(true, std::memory_order_release);

void consumer() A
while (!ready.load(std::memory_order_acquire));
std: :cout << data; // guaranteed to see 42

Locks

class SpinLock {
std::atomic_flag locked{ };
public:
void lock() {
while (locked.test_and_set(std: :memory_order_acquire)

void unlock() A
locked.clear(std: :memory_order_release):

*don't write locks like that, goto Igor and ben lecture to learn
how to

CAS loops

1. Read a shared memory location V (the expected value).
2. Compute a new value V’ based on the current state.
3. Attempt to atomically set the memory location to V' only if it still equals the

expected value.
4. If the CAS fails (another thread changed the memory), repeat from step 1.

CAS loops

1. Read a shared memory location V (the expected value).
2. Compute a new value V’ based on the current state.
3. Attempt to atomically set the memory location to V' only if it still equals the

expected value.
4. If the CAS fails (another thread changed the memory), repeat from step 1.

Dynamic value based on state -> CAS

CAS loops

new_node = new Node(val, head);
while (!'head.compare_exchange_weak(new_node->next, new_node));

Both fetch_and_* and exchange can be implemented with simple cas loop.

This is the way the new fetch_min/max are implemented in x86

Takeaways

- We can make stuff go faster!

Takeaways

- We can make stuff go faster!
- Micro-architecture is interesting! ...And sometimes useful.

END

http://www.youtube.com/watch?v=FvzYMyeTdQc

END

But we have time...

http://www.youtube.com/watch?v=FvzYMyeTdQc

MEMORY
MODEL

http://www.youtube.com/watch?v=FvzYMyeTdQc

Bonus 1 - sat solver

SAT (Boolean satisfiability) is a central problem in theoretical CS academic.
It asks whether a formula of AND of OR-clauses of boolean variables have a

solution.
It is the first problem proven to be NP-complete.

Example

Given this code to get mutual exclusion
std: :atomic<int> x = 0, y = 0;

void thread() {
int tid = std::this_thread::get_tid();

white (1) {
x = tid;
if (y && y !'= tid) continuve;
y = tid;
if (x && x !'= tid) continve;
/* critical section */

}

solution

https://colab.research.qgoogle.com/drive/1Ep8dU4dF 1 GKCW7qlfLys4 OcNWY EgcAXO?usp=sharing

https://colab.research.google.com/drive/1Ep8dU4dF1GKCW7qlfLys4OcNWYEgcAXO?usp=sharing

Pros and cons

Pro:
Finds concrete counterexamples.
There is multiple encoders(CBMC,KLEE) and solvers(z3).
Cons:
Can blow up for large depths.
Can make mistakes encoding the constraints.

In the end it can’t really solve just say that in some number of steps there isn't
bug.

Bonus 2 - CAS and the aba problem

void LL::push_front(int val)

{
auto new_node = new Node{val, this->head};
while (!this->head.compare_exchange_weak(new_node->next, new_node));
}
avto LL::pop_front()
{
Node* ret_ptr;
Node* next_ptr;
do {
ret_ptr = head.load();
next_ptr = ret_ptr->next;
} while(!this->head.compare_exchange_weak(ret_ptr, next_ptr));
delete ret_ptr;
}

https://godbolt.org/z/3a5e538eG

https://godbolt.org/z/3a5e538eG

Bonus 3 - volatile vs atomics

Volatile are just saying reads and writes will not be optimized.

Atomic variable on the other hand can be optimized but do impose
synchronization.

	Slide 1: Order! Order!
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Atomics very briefly
	Slide 9: Atomics very briefly
	Slide 10: What’s in it for us?
	Slide 11: I’m all ears…
	Slide 12
	Slide 13: Our Baby Memory Model
	Slide 14: Our Baby Memory Model
	Slide 15: Our Baby Memory Model
	Slide 16: But hey it’s slow
	Slide 17: But hey it’s slow
	Slide 18: Pipelining
	Slide 20: OoOE
	Slide 21: OoOE
	Slide 22: OoOE
	Slide 25: What does it mean really?
	Slide 26: What does it mean really?
	Slide 27: What does it mean really?
	Slide 28: But hey it’s slow
	Slide 29: Cache
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36: Store buffer
	Slide 37: Store buffer
	Slide 38: Store buffer
	Slide 39: Store buffer
	Slide 40: Store buffer
	Slide 41: store->load forwarding
	Slide 42: Store buffer implications
	Slide 43: …
	Slide 44: …
	Slide 45: Another example
	Slide 46
	Slide 47: Simplified C++ memory model
	Slide 48: Relaxed
	Slide 49: Relaxed
	Slide 50: Relaxed since C++14
	Slide 51: Release and acquire
	Slide 52: The problem with release and acquire
	Slide 53: sequential consistency
	Slide 55: So why should we even bother?
	Slide 56: So how does the cpu do it?
	Slide 57: Small note: LL/SC
	Slide 59: Some common patterns
	Slide 60: Lightweight synchronization
	Slide 61: Locks
	Slide 62: CAS loops
	Slide 63: CAS loops
	Slide 64: CAS loops
	Slide 65: Takeaways
	Slide 66: Takeaways
	Slide 67: END
	Slide 68: END
	Slide 69
	Slide 72: Bonus 1 - sat solver
	Slide 73: Example
	Slide 74: solution
	Slide 75: Pros and cons
	Slide 76: Bonus 2 - CAS and the aba problem
	Slide 77: Bonus 3 - volatile vs atomics

