

Big problems require big solutions

High
Performance
Computing
(Supercomputers)

AI
Machine Learning
(Custom clusters)

Hyperscaler Cloud Computing (SaaS) When one computer won't do

Two computers are better than one

solution: connect multiple computers with a network

We need a better interconnect

Networks are not designed for memory access

- We have known this for a long time
- Explicit communication
 - Software APIs (e.g. sockets, RDMA)
- Emphasis on bandwidth
 - large transfers are more efficient

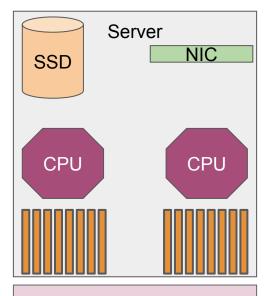
Memory Fabrics

Memory Semantics

Load + Store Instructions
Ordering

Cache Coherency

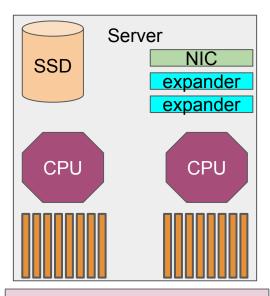
[Nice to have, not Mandatory]


Fundamentally different software from networks

Network Latency 3µs (=3000ns)

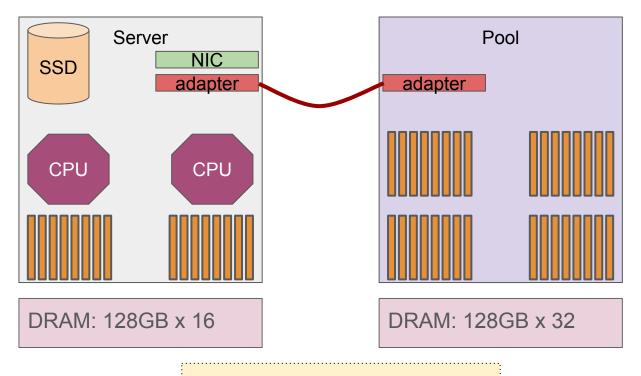
10x

Fabric Latency 300ns

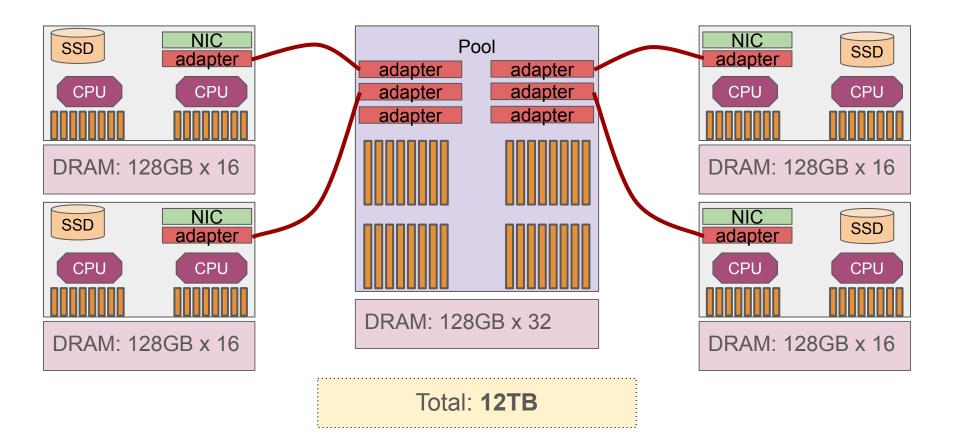

Fabric-Attached Memory

DRAM: 128GB x 16

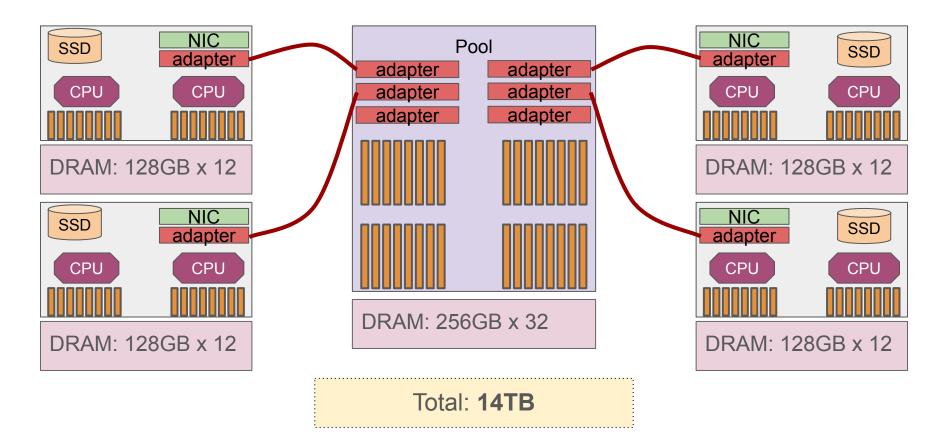
Total: 2TB


Expander

DRAM: 128GB x 16 Expander: 512GB x 2


Total: 3TB

Pool



Total: 6TB

Pool

Shared Memory Pool

Memory Fabrics

Many have tried, none have succeeded

CXL

Physical Layer: PCIe 5

Microsoft

Coherency: yes

Meta

DELLEMO Google HPE WHUAWEI

ON INVIDIA.

intel

IBM

nix Unifabri× \'|.\\'| \70LLEY

AMPERE

ellisys

KIOXIA

SYNOPSYS°

IMPERIAL G的製作

enfabrica ERICSSON : ExpectedIT

ARTERIS (adence celestial A)

JPC connectivity

H3C

Lenovo

SANDISK" ScaleFlux

LIGHTELLIGENCE® & LIOID

The Battle Of the Protocols

- CXL announced 2020
- UALink announced in April 2025
- NVLink Fusion announced in May 2025
- Scale-Up Ethernet announced in May 2025

Who will win?

UALINK [April 2025]

Members: 69

Physical Layer: XXXX

Coherency: **no**

Use Cases

High
Performance
Computing
(Supercomputers)

AI
Machine Learning
(Custom clusters)

Hyperscaler Cloud Computing (SaaS)

MPI openMP

openshmem

xCCL collectives

Spark

Microservices

Software Solutions

API for controlling the remote memory

- Allocate/free
- Access control
- Notifications

Necessary primitives

- Atomics
- Barriers

Summary

- Disaggregated memory is now a reality
- Memory expanders, pools, and shared pools are changing system design in fundamental ways
- CXL is successful but has competition
- The winner(s) have yet to be decided

More memory is better

Cache Coherency

- Cache is used to hold a local copy of data
 - Generally lower latency than main memory
 - Shorter distance for data movement
- Cached shared memory requires cache coherency
 - If two compute units update their local copies simultaneously, who wins?
- Some protocols do not support coherency by design (NVLink, UALink)
- Hardware coherency has not yet been implemented by chip vendors (CXL)
- Rely on software coherency for now

NVLink Fusion [May 2025]

Members: NVidia

Physical Layer: XXXX

Coherency: yes

Scale-Up Ethernet [May 2025]

Members: **Broadcom**

Physical Layer: **Ethernet**

Coherency: yes