
Core C++ 2025
19 Oct. 2025 :: Tel-Aviv

“Lock me up, Scotty!”
Ben Liderman & Igor Khanin

About Us

Ben Liderman
System Architect,
Security & Trust Products

Igor Khanin
Senior Core Engineer,
Wallet Solutions

Fireblocks powers companies of all sizes to
confidently build, run, and grow their business
on the blockchain.

About Fireblocks

$10T+
Transfers Secured

300M+
Wallets Created

100+
Blockchains

2,000+
Global Customers

Reminder: The Mutual Exclusion Problem

Given N concurrent threads and a critical section C:

● Safety Property - at most one thread inside C

● Liveness Property - one of the following:

○ No Deadlocks

○ No Starvation / Basic Fairness

○ Bounded Wait / Strong Fairness

Stronger

(As per prof. Hagit Attiya)

C++ has a Built-in Solution for the MEP

static std::mutex transporter_lock;
static Engineer scotty;

void beam_up_crew(const std::string& crew_member)
{
 std::lock_guard lg { transporter_lock };

 scotty.beam_me_up(crew_member);
 std::cout << crew_member
 << " back on the Enterprise!"
 << std::endl;
}

It Worked, Until it didn’t…

Software Guard eXtensions from 10,000 feet

Kernel

Userspace

Encrypted
Memory

Untrusted
Host

Trusted
Enclave

Kernel

Userspace

Encrypted
Memory

Untrusted
Host

Trusted
Enclave

Linux Scheduler

Trusted
Thread #1

Trusted
Thread #2

Software Guard eXtensions from 10,000 feet

Software Guard eXtensions from 10,000 feet

Kernel

Userspace

Encrypted
Memory

Untrusted
Host

Trusted
Enclave

service.log“hi”

“hi”

“hi”

“hi”

Write

Syscall

ocall

ocall

Sources of Mutual Exclusion for Applications

● Hardware support

● Operating system support

● Pure software algorithms (not practical)

Mutual Exclusion with Hardware Support

std::atomic_flag is_locked = ATOMIC_FLAG_INIT;

void lock() {
 while (is_locked.test_and_set(std::memory_order_acquire))
 {
 // Spin!
 }
}

void unlock() {
 is_locked.clear(std::memory_order_release);
}

Mutual Exclusion with Hardware Support

✔ Safe and deadlock-free

✔ All state is inside the
enclave

✔ Can be good under low
contention

✗ Starvation

✗ Spinning wastes CPU

✗ Atomic access has
overhead

✗ Breakdown under
preemptive multitasking

Mutual Exclusion with OS Support (Linux)

constexpr uint32_t UNLOCKED = 0;
constexpr uint32_t LOCKED = 1;

alignas(4) uint32_t is_locked = UNLOCKED;
std::atomic_ref<uint32_t> is_locked_ref { is_locked };

void lock() {
 while (is_locked_ref.exchange(LOCKED, std::memory_order_acquire)
 != UNLOCKED) {
 syscall(SYS_futex, &is_locked, FUTEX_WAIT_PRIVATE, LOCKED, NULL);
 }
}

void unlock() {
 is_locked_ref.store(UNLOCKED, std::memory_order_release);
 syscall(SYS_futex, &is_locked, FUTEX_WAKE_PRIVATE, 1); // Wake one
}

A Balanced Approach

● We can mix the approaches

● Separate managing the lock state from thread control

● The “Parking Lot” design pattern

What we had

int sgx_thread_mutex_lock(sgx_thread_mutex_t *mutex) {
 while (1) {
 SPIN_LOCK(&mutex->m_lock);
 ...
 if (/*mutex is available*/) {
 ...
 mutex->m_owner = self;
 SPIN_UNLOCK(&mutex->m_lock);
 return 0;
 }
 QUEUE_INSERT_TAIL(&mutex->m_queue, self);
 SPIN_UNLOCK(&mutex->m_lock);

 sgx_thread_wait_untrusted_event_ocall(self);
 }
}

Critical Section
Control

Thread Control

A First Improvement

● We can eliminate the inner spinlock by placing the state in a single trusted
atomic variable

● But it doesn’t mean that we shouldn’t spin at all!

● Adaptive Locking: Try to set the lock state N times before asking the
operating system to suspend the thread

Is Fairness Good?

● Satisfying a strong liveness property is a trade-off

● Strong fairness reduces variance of time for entering the critical section,
at the cost of both throughput and average latency

● Most platforms do not have a fairness guarantee by default

What we Got

Should I do that too?

● “Locking isn’t slow, contention is”

● Primary effort should be directed at architecture choices that reduce
contention

● Understand the guarantees that your specific platform is giving, and
compare them to your workloads

● “Insufficient facts always invite danger”

Thank you!

