'@’ Core C++ 2025

19 Oct. 2025 :: Tel-Aviv

“Lock me up, Scotty!”

Ben Liderman & Igor Khanin

N AboutUs

Ben Liderman Igor Khanin

System Architect, Senior Core Engineer,
Security & Trust Products Walllet Solutions

About Fireblocks

Fireblocks powers companies of all sizes to
confidently build, run, and grow their business
on the blockchain.

S10T+

Transfers Secured

100+

Blockchains

300M +

Wallets Created

2,000+

Global Customers

11111111111111

.................

e
¥~ BNP PARIBAS

A

‘nab

VISA
DNB

‘eToro’

Revolut

P4 Hssc

ABN-AMRO
4

A,
‘&' BINANCE.US

7 UniCredit Bank

Reminder: The Mutual Exclusion Problem

Given N concurrent threads and a critical section C:
. Safety Property - at most one thread inside C
. Liveness Property - one of the following:

No Deadlocks

No Starvation / Basic Fairness

J1abuons

Bounded Wait / Strong Fairness

(As per prof. Hagit Attiya)

N C++ has aBuilt-in Solution forthe MEP

static std::mutex transporter_lock;
static Engineer scotty;

void beam_up_crew(const std::string& crew_member)
{
std::lock_guard 1g { transporter_lock };

scotty.beam_me_up(crew_member) ;
std::cout << crew_member

<< back on the Enterprise!”
<< std::endl;

N It Worked, Until it didn’t...

CPU Usage by Container

175

150

12.5

10.0

Cores

7.5

5.0

2 wwAv\pv*\/v—\/\J \/W\’\Nv-\/\/\mm/\/\/\/wv

2 S5 20 5 D e
> ,\/Ni\ ,\b;.'b ,\b‘xb‘ AS 0 AS A%

N ,5"50 MO Q0

A A AN

N Software Guard eXtensions from 10,000 feet

Kernel

Userspace

Encrypted
Memory

(

\

N

AL

Untrusted
Host

Trusted
Enclave

N Software Guard eXtensions from 10,000 feet

Kernel

Userspace

Encrypted
Memory

4)
Linux Scheduler
> s
v V
Trusted Trusted
Thread #1 | Thread #2
g J

Untrusted
Host

Trusted
Enclave

N Software Guard eXtensions from 10,000 feet

Kernel

Userspace

Encrypted
Memory

“hi”

J

A

i

service.log

Untrusted
Host

Trusted
Enclave

N Sources of Mutual Exclusion for Applications

e Hardware support
e Operating system support

e Pure software algorithms (not practical)

N Mutual Exclusion with Hardware Support

std::atomic_flag is_locked = ATOMIC_FLAG_INIT;

void lock() {
while (is_locked.test_and_set(std::memory_order_acquire))

{
}

// Spin!
}

void unlock() {
is_locked.clear(std: :memory_order_release);
'

BN Mutual Exclusion with Hardware Support

v Safe and deadlock-free

v All state is inside the
enclave

v Canbe good under low
contention

Starvation
Spinning wastes CPU

Atomic access has
overhead

Breakdown under
preemptive multitasking

Mutual Exclusion with OS Support (Linux)

constexpr uint32_t UNLOCKED = 0;

constexpr uint32_t LOCKED = 1;

alignas(4) uint32_t is_locked = UNLOCKED;
std::atomic_ref<uint32_t> is_locked_ref { is_locked };

void lock() {
while (is_locked_ref.exchange(LOCKED, std::memory_order_acquire)
I= UNLOCKED) {
syscall(SYS_futex, &is_locked, FUTEX_WAIT_PRIVATE, LOCKED, NULL);

}

void unlock() {
is_locked_ref.store(UNLOCKED, std::memory_order_release);
syscall(SYS_futex, &is_locked, FUTEX_WAKE_PRIVATE, 1); // Wake one

N A Balanced Approach

« We can mix the approaches
. Separate managing the lock state from thread control

o The “Parking Lot” design pattern

AR LHEWRYELED

int sgx_thread_mutex_lock(sgx_thread_mutex_t *mutex) {

whlle le (1) {
" SPIN _LOCK(&mutex->m lock)

if (/*mutex is available*/) {

mutex->m_owner = self;
SPIN_UNLOCK(&mutex->m_lock) ;
return 90;

Critical Section <
Control

}
QUEUE_INSERT_TAIL (&mutex->m_queue, self);
SPIN_UNLOCK(&mutex->m_lock) ;

-

ﬂv%wComml<(| sgx_thread_wait_untrusted_event_ocall(self);

}

N AFirstimprovement

« We can eliminate the inner spinlock by placing the state in a single trusted
atomic variable

. Butitdoesn’t mean that we shouldn’t spin at all!

. Adaptive Locking: Tryto setthe lock state N times before asking the
operating system to suspend the thread

NN Is Fairness Good?

. Satisfying a strong liveness property is a trade-off

. Strong fairness reduces variance of time for entering the critical section,
at the cost of both throughput and average latency

. Most platforms do not have a fairness guarantee by default

N What we Got

Per-thread Throughput: Higher is Better

Our Implementation
9.0 —— std::mutex

8.0

7.0

6.0

50

4.0

3.0

Throughput (locks/msec)

2.0

10

0.0 20 40 60 80 100 120 140

Concurrent Threads

N Shouldlido that too?

. “Lockingisn’t slow, contentionis”

. Primary effort should be directed at architecture choices that reduce
contention

. Understand the guarantees that your specific platform is giving, and
compare them to your workloads

. ‘“Insufficient facts always invite danger”

N Fireblocks

