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“Lock me up, Scotty!”
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Reminder: The Mutual Exclusion Problem

Given N concurrent threads and a critical section C:

● Safety  Property - at most one thread inside C

● Liveness  Property - one of the following:

○ No Deadlocks

○ No Starvation / Basic Fairness

○ Bounded Wait / Strong Fairness

Stronger

(As per prof. Hagit Attiya)



C++ has a Built-in Solution for the MEP

static std::mutex transporter_lock;
static Engineer scotty;

void beam_up_crew(const std::string& crew_member)
{
    std::lock_guard lg { transporter_lock };

    scotty.beam_me_up(crew_member);
    std::cout << crew_member
              << " back on the Enterprise!"
              << std::endl;
}



It Worked, Until it didn’t…
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Sources of Mutual Exclusion for Applications

● Hardware support

● Operating system support

● Pure software algorithms (not practical)



Mutual Exclusion with Hardware Support

std::atomic_flag is_locked = ATOMIC_FLAG_INIT;

void lock() {
    while (is_locked.test_and_set(std::memory_order_acquire))
    {
        // Spin!
    }
}

void unlock() {
    is_locked.clear(std::memory_order_release);
}



Mutual Exclusion with Hardware Support

✔ Safe and deadlock-free

✔ All state is inside the 
enclave

✔ Can be good under low 
contention

✗ Starvation

✗ Spinning wastes CPU

✗ Atomic access has 
overhead

✗ Breakdown under 
preemptive multitasking



Mutual Exclusion with OS Support (Linux)

constexpr uint32_t UNLOCKED = 0;
constexpr uint32_t LOCKED = 1;

alignas(4) uint32_t is_locked = UNLOCKED;
std::atomic_ref<uint32_t> is_locked_ref { is_locked };

void lock() {
    while (is_locked_ref.exchange(LOCKED, std::memory_order_acquire)
           != UNLOCKED) {
        syscall(SYS_futex, &is_locked, FUTEX_WAIT_PRIVATE, LOCKED, NULL);
    }
}

void unlock() {
    is_locked_ref.store(UNLOCKED, std::memory_order_release);
    syscall(SYS_futex, &is_locked, FUTEX_WAKE_PRIVATE, 1); // Wake one
}



A Balanced Approach

● We can mix the approaches

● Separate managing the lock state from thread control

● The “Parking Lot” design pattern



What we had

int sgx_thread_mutex_lock(sgx_thread_mutex_t *mutex) {
    while (1) {
        SPIN_LOCK(&mutex->m_lock);
        ...
        if (/*mutex is available*/) {
            ...
            mutex->m_owner = self;
            SPIN_UNLOCK(&mutex->m_lock);
            return 0;
        }
        QUEUE_INSERT_TAIL(&mutex->m_queue, self);
        SPIN_UNLOCK(&mutex->m_lock);

        sgx_thread_wait_untrusted_event_ocall(self);
    }
}

Critical Section 
Control

Thread Control





A First Improvement

● We can eliminate the inner spinlock by placing the state in a single trusted 
atomic variable

● But it doesn’t mean that we shouldn’t spin at all!

● Adaptive Locking:  Try to set the lock state N times before asking the 
operating system to suspend the thread



Is Fairness Good?

● Satisfying a strong liveness property is a trade-off

● Strong fairness reduces variance of time for entering the critical section, 
at the cost of both throughput and average latency

● Most platforms do not have a fairness guarantee by default



What we Got



Should I do that too?

● “Locking isn’t slow, contention is”

● Primary effort should be directed at architecture choices that reduce 
contention

● Understand the guarantees that your specific platform is giving, and 
compare them to your workloads

● “Insufficient facts always invite danger”



Thank you!


