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“Lock me up, Scotty!”

Ben Liderman & Igor Khanin
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About Fireblocks

Fireblocks powers companies of all sizes to
confidently build, run, and grow their business
on the blockchain.
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Reminder: The Mutual Exclusion Problem

Given N concurrent threads and a critical section C:
. Safety Property - at most one thread inside C
. Liveness Property - one of the following:

No Deadlocks

No Starvation / Basic Fairness

J1abuons

Bounded Wait / Strong Fairness

(As per prof. Hagit Attiya)



N C++ has aBuilt-in Solution forthe MEP

static std::mutex transporter_lock;
static Engineer scotty;

void beam_up_crew(const std::string& crew_member)
{
std::lock_guard 1g { transporter_lock };

scotty.beam_me_up(crew_member) ;
std::cout << crew_member

<< back on the Enterprise!”
<< std::endl;



N It Worked, Until it didn’t...

CPU Usage by Container
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N Software Guard eXtensions from 10,000 feet
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N Software Guard eXtensions from 10,000 feet
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N Software Guard eXtensions from 10,000 feet
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N Sources of Mutual Exclusion for Applications

e Hardware support
e Operating system support

e Pure software algorithms (not practical)



N Mutual Exclusion with Hardware Support

std::atomic_flag is_locked = ATOMIC_FLAG_INIT;

void lock() {
while (is_locked.test_and_set(std::memory_order_acquire))

{
}

// Spin!
}

void unlock() {
is_locked.clear(std: :memory_order_release);
'



BN Mutual Exclusion with Hardware Support

v Safe and deadlock-free

v All state is inside the
enclave

v Canbe good under low
contention

Starvation
Spinning wastes CPU

Atomic access has
overhead

Breakdown under
preemptive multitasking



Mutual Exclusion with OS Support (Linux)

constexpr uint32_t UNLOCKED = 0;

constexpr uint32_t LOCKED = 1;

alignas(4) uint32_t is_locked = UNLOCKED;
std::atomic_ref<uint32_t> is_locked_ref { is_locked };

void lock() {
while (is_locked_ref.exchange(LOCKED, std::memory_order_acquire)
I= UNLOCKED) {
syscall(SYS_futex, &is_locked, FUTEX_WAIT_PRIVATE, LOCKED, NULL);

}

void unlock() {
is_locked_ref.store(UNLOCKED, std::memory_order_release);
syscall(SYS_futex, &is_locked, FUTEX_WAKE_PRIVATE, 1); // Wake one



N A Balanced Approach

« We can mix the approaches
. Separate managing the lock state from thread control

o The “Parking Lot” design pattern
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int sgx_thread_mutex_lock(sgx_thread_mutex_t *mutex) {

whlle le (1) {
" SPIN _LOCK(&mutex->m lock)

if (/*mutex is available*/) {

mutex->m_owner = self;
SPIN_UNLOCK(&mutex->m_lock) ;
return 90;

Critical Section <
Control

}
QUEUE_INSERT_TAIL (&mutex->m_queue, self);
SPIN_UNLOCK(&mutex->m_lock) ;

-

ﬂv%wComml<(| sgx_thread_wait_untrusted_event_ocall(self);

}






N AFirstimprovement

« We can eliminate the inner spinlock by placing the state in a single trusted
atomic variable

. Butitdoesn’t mean that we shouldn’t spin at all!

. Adaptive Locking: Tryto setthe lock state N times before asking the
operating system to suspend the thread



NN Is Fairness Good?

. Satisfying a strong liveness property is a trade-off

. Strong fairness reduces variance of time for entering the critical section,
at the cost of both throughput and average latency

. Most platforms do not have a fairness guarantee by default



N What we Got

Per-thread Throughput: Higher is Better
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N Shouldlido that too?

. “Lockingisn’t slow, contentionis”

. Primary effort should be directed at architecture choices that reduce
contention

. Understand the guarantees that your specific platform is giving, and
compare them to your workloads

. ‘“Insufficient facts always invite danger”



N Fireblocks




