¢ mobileye-

Ivpinctttor Gt

Making the Compiler Do the Thinking

chris.gearing@mobileye.com

Imagine lite without types

4N mobileye- PROPRIETARY AND CONFIDENTIAL 2
Images created by Microsoft Copilot

Often with C++, we don't provide type information

4N mobileye- PROPRIETARY AND CONFIDENTIAL 3
Images created by Microsoft Copilot

What are of Types?

MHz, KHz, Hz Frame |IDs

Km/h Bus Address — CAN, Flexray
Kg, grams Hardware Indexes

metres Version Numbers

Celsius Baud Rate

Etc. PDU IDs

Anything and everything...

4N mobileye PROPRIETARY AND CONFIDENTIAL 4

~irstly... 'm not the first

There are many excellent type libraries

Elcr)\cc)jhaus KEEP IT
berneo.lom/SI STU PIDI.Y
s SIMPLE

AU

But for me, they fail the STU P|D

Keep It Stupidly Simple Stupid test f '_ .

Images created by Microsoft Copilot

4N mobileye- PROPRIETARY AND CONFIDENTIAL 5

T TL_strong_type.h Simple Class

Inthe TTL Library C++ codeis afile called T TL_strong_type.h
https://qithub.com/KhronosGroup/OpenCL-TTL

You use it like this.

TTL MyType : uint3Z2 t;
using MyType = TTL StrongType<uint3Z2 t, TTL MyType>;

Now My Type behaves just like a uint32_t
Produces exactly the same object code as a uint32_t
But possible operations are type consistent.

4N mobileye PROPRIETARY AND CONFIDENTIAL 6

https://github.com/KhronosGroup/OpenCL-TTL

template <typename T, typename UNIQUE ENUM CLASS>
struct TTL StrongType {
/* Construction from a fundamental value. */
constexpr TTL StrongType(T value) : value(value) {}

private:
/* The actual fundamental value. */
T value;

/* The unique part */
static constexpr UNIQUE ENUM CLASS unique = UNIQUE ENUM CLASS (0);

/**
* It 1s acceptable to add 2 things of the same type. The rules

* of the underlying value are used for the addition.
*

* 2 kmh + 2 kmh = 4 kmh

*/
constexpr TTL StrongType operator+ (TTL StrongType const &rhs) const
return TTL StrongType (value + rhs.value);

J

/**

* Tt 1s generally acceptable to divide by the type.
*

* 2 KHz / 2 KHz =

* 1000KHz / 500 KHz =

*/
constexpr UNDERLYING operator/ (TTL StrongType rhs) const {
return value / rhs.value;

J

It 1s generally not acceptable to multiply something by 1tself
and therefor this operator does not exist 1n the code.

2 KHz * 2 KHz = KHz?

/**
* Tt 1s generally not acceptable to add to another type

*

* 2 KHz + 2 Km/h = Gives something that is really improbable
*/

| ooking at some code

KHZ CalcRealFregKHz (uint3? t divider, KHz host freqg khz,

KHz target freq khz) {

return (host freg khz / target freq khz) / divider;
J

error: could not convert ' (host freqg khz.StrongType<unsigned 1int,
StrongTypeUniquelD: :KHz>:: operator/ (target freq khz) / divider)'

from 'unsigned i1int' to 'KHz' {aka 'StrongType<unsigned 1int,
StrongTypeUniquelID: :KHz>' }

| return (host freg khz / target freqg khz) / divider;
| NNNNNNNNNNNNNNNNNNNNNN Nan~m~a~n~m~n~v~~~ e~ A

unsigned 1int

4N mobileye- PROPRIETARY AND CONFIDENTIAL 1l

CalcRealFregKHz (uiln t divider, host freqg khz,
target freqg {

return (host freg khz / target freq khz) / divider;

KHz CalcRealFregKHza (scalar,
KHz) {
return (KHz / KHz) / scalar;

Compiler Detection Of Impossible Code
CalcRealFregkKHz (T2 vi, V2, v3, vd) {
return (vl opl v2) op2 (v3 op3 v4);

Rejection-Rate

>>>>>> |ncreasing Rejection Rate >>>>>>>

Image created by Microsoft Copilot VI, V2, V3, va V1, V2, v, A w1, V2, v, A [v1,'v2', V3, va]
['uint32_t] ['wint32_t', 'uintl6_t'] ['uint32_t", 'KHz'] ['uint32_t', 'KHz', ' MHz'] ['wint32_t', 'KHz', 'MHz', 'Hz]
https://www.online-python.com/akKxHNRd2UF >>>>>> Increasing Complexity >>>>>>>

4N mobileye PROPRIETARY AND CONFIDENTIAL 13

https://www.online-python.com/aKxHNRd2UF

Compiler Detection Of Impossible Code

Use types and the developer’s ability to
write good code is increased 4-fold

Types

Static Analysis
Unit Tests
Code Review
Sanitizers

4N mobileye-

PROPRIETARY AND CONFIDENTIAL

14

Whole Systems

4 mobileye

The more types you caninclude in your
system, the more robust it will become

TTL_StrongTypeis great for scalar values,
which most are

Typed primitives produce a great basis to build
more complex types upon

The system becomes more type-safe

X 4
inlimpENEEn~
I N EEEm EEE

Input Data
struct $

e
i

— 7"

e

Image created by Microsoft Copilot

Output Data
struct 3

PROPRIETARY AND CONFIDENTIAL

15

One Caveat - Do Not Over Do Typing

| have seen suggestions that typing should be used to try to eradicate even
more errors.

RealFrequencyKHz CalcRealFregKHz (uint32 t divider,

HostFrequencyKHz host freq khz,
TargetFrequencyKHz target freqg khz);

Whilst this might make it even harder to break the code, it will make it much

harder to change the code, because you are adding type and usage
information.

Use natural types that are the type of the data, not the usage of the data.

4N mobileye PROPRIETARY AND CONFIDENTIAL

16

VWhat Next

Try adding some simple typing to your code
Go to https://qgithub.com/KhronosGroup/OpenCL-TTL

And try it, a simple example will take 10 minutes
https://godbolt.org/z/viaEx89%ea

Once you try it, look at the other typing libraries

Emai

me if you have suggestions or observations

he

[L example is just one way

Strong Typing makes coding better by any measure

4 mobileye

PROPRIETARY AND CONFIDENTIAL

17

https://github.com/KhronosGroup/OpenCL-TTL
https://godbolt.org/z/vjaEx89ea

1 hankyou

|

Any Questions?

chris.gearing@mobileye.com

¢ mobileye- . PROPRETARYANDCONFIDENTIAL 18

Disclaimer

This document’s content is Mobileye™ proprietary and confidential, and it is for the use of Mobileye-authorized persons only.
Unauthorized use, reproduction, and disclosure of any part of this document is prohibited. Unless otherwise explicitly agreed in writing
by Mobileye, Mobileye makes no representation as to this document’s correctness, completeness, or fitness for any particular purpose.
Specifications are subject to change without notice. “M”, “M Mobileye”, “EyeQ”, “Mobileye Roadbook”, “REM”, “REM Road Experience

Management”, and other Mobileye trademarks or logos appearing herein are registered trademarks or trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU, and/or other jurisdictions. © Mobileye, 2023

	Slide 1: Typing++ for C++
	Slide 2: Imagine life without types
	Slide 3: Often with C++, we don’t provide type information
	Slide 4: What are of Types?
	Slide 5: Firstly… I’m not the first
	Slide 6: TTL_strong_type.h Simple Class
	Slide 7: How simple
	Slide 8: What is type consistent
	Slide 9: What is type consistent
	Slide 10: What is type consistent
	Slide 11: Looking at some code
	Slide 12: Why do we get this error
	Slide 13: Compiler Detection Of Impossible Code
	Slide 14: Compiler Detection Of Impossible Code
	Slide 15: Whole Systems
	Slide 16: One Caveat - Do Not Over Do Typing
	Slide 17: What Next
	Slide 18: Thankyou + Any Questions?
	Slide 19: Disclaimer

