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Imagine lite without types

4N mobileye- PROPRIETARY AND CONFIDENTIAL 2
Images created by Microsoft Copilot



Often with C++, we don't provide type information
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What are of Types?

MHz, KHz, Hz Frame |IDs

Km/h Bus Address — CAN, Flexray
Kg, grams Hardware Indexes

metres Version Numbers

Celsius Baud Rate

Etc. PDU IDs

Anything and everything...
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~irstly... 'm not the first

There are many excellent type libraries

Elcr)\cc)jhaus KEEP IT
berneo.lom/SI STU PIDI.Y
s SIMPLE

AU

But for me, they fail the STU P|D

Keep It Stupidly Simple Stupid test f '_ .
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T TL_strong_type.h Simple Class

Inthe TTL Library C++ codeis afile called T TL_strong_type.h
https://qithub.com/KhronosGroup/OpenCL-TTL

You use it like this.

TTL MyType : uint3Z2 t;
using MyType = TTL StrongType<uint3Z2 t, TTL MyType>;

Now My Type behaves just like a uint32_t
Produces exactly the same object code as a uint32_t
But possible operations are type consistent.
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https://github.com/KhronosGroup/OpenCL-TTL

template <typename T, typename UNIQUE ENUM CLASS>
struct TTL StrongType {
/* Construction from a fundamental value. */
constexpr TTL StrongType(T value) : value(value) {}

private:
/* The actual fundamental value. */
T value;

/* The unique part */
static constexpr UNIQUE ENUM CLASS unique = UNIQUE ENUM CLASS (0);




/**
* It 1s acceptable to add 2 things of the same type. The rules

* of the underlying value are used for the addition.
*

* 2 kmh + 2 kmh = 4 kmh

*/
constexpr TTL StrongType operator+ (TTL StrongType const &rhs) const
return TTL StrongType (value + rhs.value);

J



/**

* Tt 1s generally acceptable to divide by the type.
*

* 2 KHz / 2 KHz =

* 1000KHz / 500 KHz =

*/
constexpr UNDERLYING operator/ (TTL StrongType rhs) const {
return value / rhs.value;

J



It 1s generally not acceptable to multiply something by 1tself
and therefor this operator does not exist 1n the code.

2 KHz * 2 KHz = KHz?

/**
* Tt 1s generally not acceptable to add to another type

*

* 2 KHz + 2 Km/h = Gives something that is really improbable
*/




| ooking at some code

KHZ CalcRealFregKHz (uint3? t divider, KHz host freqg khz,

KHz target freq khz) {

return (host freg khz / target freq khz) / divider;
J

error: could not convert ' (host freqg khz.StrongType<unsigned 1int,
StrongTypeUniquelD: :KHz>:: operator/ (target freq khz) / divider)'

from 'unsigned i1int' to 'KHz' {aka 'StrongType<unsigned 1int,
StrongTypeUniquelID: :KHz>' }

| return (host freg khz / target freqg khz) / divider;
| NNNNNNNNNNNNNNNNNNNNNN Nan~m~a~n~m~n~v~~~ e~ A

unsigned 1int
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CalcRealFregKHz (uiln t divider, host freqg khz,
target freqg {

return (host freg khz / target freq khz) / divider;

KHz CalcRealFregKHza (scalar,
KHz) {
return (KHz / KHz) / scalar;




Compiler Detection Of Impossible Code
CalcRealFregkKHz (T2 vi, V2, v3, vd) {
return (vl opl v2) op2 (v3 op3 v4);

Rejection-Rate

>>>>>> |ncreasing Rejection Rate >>>>>>>

Image created by Microsoft Copilot VI, V2, V3, va V1, V2, v, A w1, V2, v, A [v1,'v2', V3, va]
['uint32_t] ['wint32_t', 'uintl6_t'] ['uint32_t", 'KHz'] ['uint32_t', 'KHz', ' MHz']  ['wint32_t', 'KHz', 'MHz', 'Hz]
https://www.online-python.com/akKxHNRd2UF >>>>>> Increasing Complexity >>>>>>>
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https://www.online-python.com/aKxHNRd2UF

Compiler Detection Of Impossible Code

Use types and the developer’s ability to
write good code is increased 4-fold

Types

Static Analysis
Unit Tests
Code Review
Sanitizers
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Whole Systems

4 mobileye

The more types you caninclude in your
system, the more robust it will become

TTL_StrongTypeis great for scalar values,
which most are

Typed primitives produce a great basis to build
more complex types upon

The system becomes more type-safe

X 4
inlimpENEEn~
I N EEEm EEE

Input Data
struct $

e
i

— 7"

e

Image created by Microsoft Copilot

Output Data
struct 3
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One Caveat - Do Not Over Do Typing

| have seen suggestions that typing should be used to try to eradicate even
more errors.

RealFrequencyKHz CalcRealFregKHz (uint32 t divider,

HostFrequencyKHz host freq khz,
TargetFrequencyKHz target freqg khz);

Whilst this might make it even harder to break the code, it will make it much

harder to change the code, because you are adding type and usage
information.

Use natural types that are the type of the data, not the usage of the data.
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VWhat Next

Try adding some simple typing to your code
Go to https://qgithub.com/KhronosGroup/OpenCL-TTL

And try it, a simple example will take 10 minutes
https://godbolt.org/z/viaEx89%ea

Once you try it, look at the other typing libraries

Emai

me if you have suggestions or observations

he

[ L example is just one way

Strong Typing makes coding better by any measure
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https://github.com/KhronosGroup/OpenCL-TTL
https://godbolt.org/z/vjaEx89ea

1 hankyou

_|_

Any Questions?

chris.gearing@mobileye.com
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Disclaimer

This document’s content is Mobileye™ proprietary and confidential, and it is for the use of Mobileye-authorized persons only.
Unauthorized use, reproduction, and disclosure of any part of this document is prohibited. Unless otherwise explicitly agreed in writing
by Mobileye, Mobileye makes no representation as to this document’s correctness, completeness, or fitness for any particular purpose.
Specifications are subject to change without notice. “M”, “M Mobileye”, “EyeQ”, “Mobileye Roadbook”, “REM”, “REM Road Experience

Management”, and other Mobileye trademarks or logos appearing herein are registered trademarks or trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU, and/or other jurisdictions. © Mobileye, 2023
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