
Core C++ 2025
19 Oct. 2025 :: Tel-Aviv

Abstraction Addiction:
When good C++ design goes bad

Adi Ben David



Who am I?

Senior software engineer at Cynet Security

BSc in Computer Science from the Technion

About a decade of experience, mostly in C++

Mother of 2 adorable kids

All opinions expressed in this lecture are my own
and don’t represent the company or anyone else



Why are we here?

I just came back from paternity leave, but the 
inspiration for this talk came right before it.

Reviewing code that sparked some strong 
emotions …

We’re going to be talking about over-
engineering

… and you may be similarly triggered



◊ This code was created specifically for this lecture,
but inspired by real code I’ve encountered

◊ The code is “slide-friendly”, meaning not complete
and only shows relevant highlights



How and why code
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Event

Store event

Process event to 
make decision

Log 
information

Wait queue

Report event

How abstract can we go?
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We could continue

But I think we get the point



◊ Do we have a good reason for 
abstraction or is this simply for 
future proofing made up scenarios?

◊ Is there enough substance to justify 
a separate class?

◊ Does this actually make the code 
better or more readable?

Before we abstract, weigh the act





Operators galore



Because “MyInFile” 
had operator++

Operators galore

Like in 
“MyInFile”



Operators galore



Beware of operators,
they might bite

◊ Balance what clean and compact 
means

◊ Are we better off with a 
descriptive (yet longer) method 
name?

◊ Is the overload intuitive or forced?

◊ Intuition -> assumptions
wrong assumptions -> bug potential



Let’s investigate
Some code



Error: Failed to move 
config.txt

I tried writing a 
configuration into a file

Surprised to find no file,
and the following error message



Let’s dive in
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Deep dive into the sun

◊ Deep hierarchies may hide bugs

◊ Should we inherit or add a 
member?

◊ Shallow -> more code being read
Deep -> rely on predecessors' logic





Summary Checklist

SRP abuse: Multiple classes with 1-3 substantial methods.

Reconsider the splits – some of these classes may make more sense joined.

Operator overloading – is this the intuitive functionality or should this be a different 
function?

Inherit or add a member?

Is this really a natural expansion of the API or do we simply need some utility 
functionality from another class?

Co
de is an art

A

nd a balancing ac t



Questions

Adi Ben David

https://medium.com/@adi.ashour
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