
Core C++ 2025
19 Oct. 2025 :: Tel-Aviv

Abstraction Addiction:
When good C++ design goes bad

Adi Ben David



Who am I?

Senior software engineer at Cynet Security

BSc in Computer Science from the Technion

About a decade of experience, mostly in C++

Mother of 2 adorable kids

All opinions expressed in this lecture are my own
and don’t represent the company or anyone else



Why are we here?

I just came back from paternity leave, but the 
inspiration for this talk came right before it.

Reviewing code that sparked some strong 
emotions …

We’re going to be talking about over-
engineering

… and you may be similarly triggered



◊ This code was created specifically for this lecture,
but inspired by real code I’ve encountered

◊ The code is “slide-friendly”, meaning not complete
and only shows relevant highlights



How and why code



How and why code Solve a problem

“Pretty”

Abstract

Future
proof

Readable

Maintainable
Efficient

…



Solve a problem

“Pretty”

Abstract

Future
proof

Readable

Maintainable
Efficient

…

How and why code



Event

Store event

Process event to 
make decision

Log 
information

Wait queue

Report event

How abstract can we go?



Event

Store event

Process event to 
make decision

Log 
information

Wait queue

Report event

How abstract can we go?



How abstract can we go?



How abstract can we go?



How abstract can we go?



How abstract can we go?



How abstract can we go?



We could continue

But I think we get the point



◊ Do we have a good reason for 
abstraction or is this simply for 
future proofing made up scenarios?

◊ Is there enough substance to justify 
a separate class?

◊ Does this actually make the code 
better or more readable?

Before we abstract, weigh the act





Operators galore



Because “MyInFile” 
had operator++

Operators galore

Like in 
“MyInFile”



Operators galore



Beware of operators,
they might bite

◊ Balance what clean and compact 
means

◊ Are we better off with a 
descriptive (yet longer) method 
name?

◊ Is the overload intuitive or forced?

◊ Intuition -> assumptions
wrong assumptions -> bug potential



Let’s investigate
Some code



Error: Failed to move 
config.txt

I tried writing a 
configuration into a file

Surprised to find no file,
and the following error message



Let’s dive in



Let’s dive in



Let’s dive in



Let’s dive in



config.txt

Let’s dive in



config.txt

Let’s dive in



Let’s dive in



Let’s dive in



Let’s dive in



Let’s dive in



Let’s dive in



Let’s dive in



Let’s dive in



Let’s dive in

config.txt



config.txt

Let’s dive in

config.txt



Deep dive into the sun

◊ Deep hierarchies may hide bugs

◊ Should we inherit or add a 
member?

◊ Shallow -> more code being read
Deep -> rely on predecessors' logic





Summary Checklist

SRP abuse: Multiple classes with 1-3 substantial methods.

Reconsider the splits – some of these classes may make more sense joined.

Operator overloading – is this the intuitive functionality or should this be a different 
function?

Inherit or add a member?

Is this really a natural expansion of the API or do we simply need some utility 
functionality from another class?

Co
de is an art

A

nd a balancing ac t



Questions

Adi Ben David

https://medium.com/@adi.ashour


	Default Section
	Slide 1: Abstraction Addiction: When good C++ design goes bad
	Slide 2: Who am I?
	Slide 3: Why are we here?
	Slide 4
	Slide 5: How and why code
	Slide 6: How and why code
	Slide 7: How and why code
	Slide 8: How abstract can we go?
	Slide 9: How abstract can we go?
	Slide 10: How abstract can we go?
	Slide 11: How abstract can we go?
	Slide 13: How abstract can we go?
	Slide 14: How abstract can we go?
	Slide 15: How abstract can we go?
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Operators galore
	Slide 20: Operators galore
	Slide 21: Operators galore
	Slide 22
	Slide 23
	Slide 24: I tried writing a configuration into a file
	Slide 25: Let’s dive in
	Slide 26: Let’s dive in
	Slide 27: Let’s dive in
	Slide 28: Let’s dive in
	Slide 29: Let’s dive in
	Slide 30: Let’s dive in
	Slide 31: Let’s dive in
	Slide 32: Let’s dive in
	Slide 33: Let’s dive in
	Slide 34: Let’s dive in
	Slide 35: Let’s dive in
	Slide 36: Let’s dive in
	Slide 37: Let’s dive in
	Slide 38: Let’s dive in
	Slide 39: Let’s dive in
	Slide 40
	Slide 41
	Slide 42: Summary Checklist
	Slide 43


