
Leveraging
Pure Interfaces

For Scalable C++ Applications
Udi Lavi

Who Am I?

• Udi Lavi
• C++ developer since 2000 (mainly on Windows)
• Simulators infrastructure @ Elbit
• Technical code quality reviewer:

• Standards / Portability / Performance / Maintainability / …

2

My “world”

• Simulation SDK – infrastructure & tools (integration / configuration)
• Mainly C++98 (a constraint by some projects)
• Variety of projects requirements:

• Scale & resources – CPU / memory / computers
• Environments – Embedded / Cloud / PC
• OS & Architecture – (x32 & x64) / Endian
• Libraries linkage – Shared (.dll / .so) / Static (environment dependnent)

• Other considerations
• Security standards
• Backward compatibility

3

Outline

Introduction to pure interface
• What’s a pure interface
• Incentive

Creating pure interfaces in C++
Migration case study – cost & profit
Performance
Restrictions – API Evolution & Backward Compatibility

4

Before

Many calls for support
Long builds

• Dependency prevented shortcuts
• Shortcuts → extra support calls

Long support time
Waiting a few days for support

5

Leveraging Code Quality

Standards enforcement (Security / Style / Formatting)
Static / Dynamic analysis
Warning as errors
Unused code elimination (+ code coverage)
Optimization & Performance (+ profilers)
Portability (OS / Endian / x32/x64)
CI/CD automation

6

Leveraging Code Quality – cont.

•Pure interface

• Encapsulation
• No visible private data

• Refactoring → Automatic regression tests

7

After

Less calls for support
Fast versioned hotfix release

• ~1 hour after problem is resolved
• No build of user’s project

Fast support / less regressions
Fast response

• Usually immediately / same day

8

Let’s Move To
Pure Interface

9

Let’s Move To Pure Interface

• Team Leader: Let’s move our API to pure interface!
• Me: Are you nuts?

It’s a lot of work
It has a performance tradeoff

• Why?

(V)
(?)

10

Incentive – The Security Guard

Security guard: Good morning.
May I have your wallet please?

Visitor: Why do you need my wallet?
Security guard: I need to identify who you are.
Visitor: Oh, so you just need my ID card.
Security guard: Give me your wallet, I’ll take what I need.

Visitor: *I don’t feel comfortable about it*

11

Moral

• We do not wish to expose more than we need to
• Some things are better kept private

• Some things better remain unexposed

12

Pure Interface
What’s it all about

13

Definitions

• Abstract Class
• A class that cannot be instantiated directly (only by derived)
• Contains at least one pure virtual function

• Pure Interface
• An abstract class containing only pure virtual functions

• Implementation – only in derived class(es)

14

Incentive – Encapsulation

•Maintainability – Hiding implementation details
•Usability

• Users see only what they need
• No forbidden API
• No cluttered huge API

• Improves Testability
• Easier to make doubles

15

Incentive – Decoupling

•Reduced dependency
• Internal changes are invisible

•Easy hotfixes / versions releases
• Reduced user rebuild (depend only on API changes)

•Potential Debug / Release mix
• Requires allocation / deallocation boundaries isolation

• Registering creation & destruction function (for plugins)

16

Incentive – ABI (Application Binary Interface)

• Pure interface keeps ABI compatibility*
• At least in practice

• Potential breakers
• Cross boundary heap management (e.g. std::string)
• Some optimization flags

17

Maybe we don’t need it?

• Pure interfaces might be an overkill
• Too simple product
• Internal API
• Short life-span product

18

Creating
Pure Interface

19

“Simple” Interfaces

SDK APIICar

CCar

Interface
User CCarDriver

SDK side

USER side

SDK
implementation

20

Interface Example – Car_Interface.h

class ICar
{
protected:

// prevent direct destruction (and construction ???)
virtual ~ICar() = 0;

public:
virtual void Drive() = 0;

};

21

Interface Example – .h (new instances)

class ICar
{
protected:

virtual ~ICar() = 0;
public:

// Heap allocation (instead of new / delete) – static functions
static ICar &CreateInstance(optional parameters);
static void ReleaseInstance(ICar *&rpIntstance);
static void ReleaseInstance(ICar &rIntstance);
virtual void Drive() = 0;

};

22

Interface Example – Car_Interface.cpp

ICar &ICar::CreateInstance(optional parameters) {
CCar * const pObj = new CCar(optional parameters); // DERIVED
return *pObj;

}
void ICar::ReleaseInstance(ICar *&rpIntstance) {

delete rpIntstance; // ICar may delete ICar (BASE)
rpIntstance = NULL;

}
void ICar::ReleaseInstance(ICar &rIntstance) {

delete &rIntstance;
}

23

Usage Example

Option #1
IUIntVector &rMyIds = IUIntVector::CreateInstance();
…
IUIntVector::ReleaseInstance(rMyIds);

Option #2 (for containers / data members not in MIL)
m_pMyIds = &IUIntVector::CreateInstance();
…
IUIntVector::ReleaseInstance(m_pMyIds);

24

Singleton Example – .h

class ICarManager
{
public:

static ICarManager &Instance(); // SINGLETON

// Implemented in CCarManager
virtual ICar *GetFreeCar() = 0; // ICar

protected:
virtual ~ICarManager() = 0;

};

25

Singleton Example – .cpp

ICarManager &ICarManager::Instance()
{

// standard singleton
static CCarManager s_cTheInstance;
return s_cTheInstance;

}

26

Plugins Interface (“inverse” inheritance)

SDK API

User’s
plugins

ICar

CCar

CCarImpl

SDK
implementation

SDK side

USER side

CCarDriver
Using
Plugin

CBus

27

Plugins – “Inverse” Inheritance

• User’s plugins – usually polymorphic
• Pimpl – Pointer to Implementation

• Pimpl hides SDK side implementation
• Interface holds a pointer to a forward declared class

• Interface
• pure-virtual – implemented by derived
• Non-virtual – delegates to pImpl

28

“Inverse” Inheritance Example – .h

class CCarImpl; // forward declaration (only SDK can include its .h)
class ICar
{
private:

CCarImpl *m_pImpl;
protected:

ICar(); // Called by user derived CTOR. Constructs m_pImpl
public:

virtual ~ICar(); // public* SDK may* delete (protected otherwise)
void Drive(); // SDK delegates to pImpl->Drive();
virtual void OnDrive() = 0; // User must implement (called by SDK)
CCarImpl &GetCarImpl(); // Possibly also ‘const’ version

};

29

“Inverse” Inheritance Example – .h

…
class ICar
{

…
protected:

…
virtual ~ICar(); // protected

public:
virtual void DeleteSelf () = 0; // public – delete this (EFFORT)
…

};

30

Case Study
SDK – Legacy Code Migration

31

Migration Cost

• Refactoring SDK API – Approx. 1 human year (~75% capacity)
• Minor part of API is not pure interface per-se

• E.g. templates (base class is pure interface)

• Migrating 1st big-scale project – Approx. 1 month:
• API stabilization
• Fixing project’s bugs / misuses

• Partial automation could reduce migration effort

32

Migration result

• Usability – over 50% cut in SDK’s .h files (originally over 300)
• Reduced .h files size

• Compatibility – ABI compatibility
• VS 2010 → VS 2017
• VS 2017 → VS 2022

• Encapsulation – users are not exposed to “internals”
• No mistakes / No abuse / No surprises

• Maintainability (user) – hotfixes w/o project rebuild
• Maintainability (SDK) – detection & deletion of unreachable code
• Support – less calls & fast response

33

Performance

34

Virtual Function – Performance Penalties

• The penalties (might be irrelevant – next slide):
• Indirect Call – function’s address lookup in virtual table at runtime [~0]

• No build time determination of function address [+]

• Cache Miss – potential for additional cache miss (vtable not in cache) [+++]

• Penalties are generally small

• Often benefits outweigh penalties

• Performance usually goes unnoticed in other places w/o benefits:
• Allocations / chattiness in loops / CTOR & copy

35

Optimized Performance

• Plugins – methods are virtual anyway

• Spatial locality – eliminates cache miss impact for consecutive calls
• Loops – SDK – mostly NON-polymorphic interfaces

• Chattiness – calls on same object

• Devirtualization (+ optional inline)
• Internal use of CCar (instead of ICar)

• ‘final’ keyword

• Optimization
• PGO – Profile Guided Optimization

• WPO / LTO – Whole Program Optimization / Link Time Optimization

36

Restrictions
API Evolution & Compatibility

37

API Changes Effects – No User Build

• Indirect new & delete – hiding DTOR
• Adding member functions

• Virtual methods – at end of class [vtable order]
• Static member functions – anywhere

• Using only interfaces & primitive types (no templates / STL)
• No data members (optional pImpl)
• No change to plugins interfaces [vtable order]
• No methods deletion (can use DEPRECATED keyword in VS)
• Can’t have:

• postfix iteration / copy-CTOR

38

API Changes Effects – User Modifications

• Cases requiring user’s code modifications
• Usage of new methods / classes
• Renamed methods / classes
• API deletion / modifications (e.g. new parameters w/o default)

39

API Changes Effects – User Build (only)

• Cases requiring user recompilation
• Change in methods order (changed vtable)
• Adding parameters with default (changes signature)
• Adding overloading for existing methods (may eliminate previous cast)
• Modified API templates (changed implementation)

40

Summary

• A way to hide implementation details
• Makes code more robust & maintainable
• Improves productivity

• Suitable for “products” between development Groups
• Fits design principles of encapsulation & decoupling

• Effort may pay off (It did in our case)

41

Summary – API constraints

• Methods – pure virtual / static (otherwise delegate to m_pImpl)
• Types – primitives & interfaces
• Plugins – m_pImpl
• Object Lifetime

• CreateInstance() / ReleaseInstance()
• Instance() + some kind of “getter” – e.g. GetFreeCar()
• Prevent access to DTOR

• Order (private / protected / public)

42

Q & A

43

END

44

	Header
	Slide 1

	Introduction - me
	Slide 2: Who Am I?
	Slide 3: My “world”

	outline
	Slide 4: Outline

	Intro. - Leverage
	Slide 5: Before
	Slide 6: Leveraging Code Quality
	Slide 7: Leveraging Code Quality – cont.
	Slide 8: After

	Moving to ...
	Slide 9: Let’s Move To Pure Interface
	Slide 10: Let’s Move To Pure Interface
	Slide 11: Incentive – The Security Guard
	Slide 12: Moral

	1a. definition
	Slide 13: Pure Interface What’s it all about
	Slide 14: Definitions

	1b. Incentive
	Slide 15: Incentive – Encapsulation
	Slide 16: Incentive – Decoupling
	Slide 17: Incentive – ABI (Application Binary Interface)
	Slide 18: Maybe we don’t need it?

	2. Creating Interfaces
	Slide 19: Creating Pure Interface
	Slide 20: “Simple” Interfaces
	Slide 21: Interface Example – Car_Interface.h
	Slide 22: Interface Example – .h (new instances)
	Slide 23: Interface Example – Car_Interface.cpp
	Slide 24: Usage Example
	Slide 25: Singleton Example – .h
	Slide 26: Singleton Example – .cpp
	Slide 27: Plugins Interface (“inverse” inheritance)
	Slide 28: Plugins – “Inverse” Inheritance
	Slide 29: “Inverse” Inheritance Example – .h
	Slide 30: “Inverse” Inheritance Example – .h

	3. Migration Case Study
	Slide 31: Case Study
	Slide 32: Migration Cost
	Slide 33: Migration result

	4. Performance
	Slide 34: Performance
	Slide 35: Virtual Function – Performance Penalties
	Slide 36: Optimized Performance

	5. Restrictions & Compat.
	Slide 37: Restrictions
	Slide 38: API Changes Effects – No User Build
	Slide 39: API Changes Effects – User Modifications
	Slide 40: API Changes Effects – User Build (only)

	Summary
	Slide 41: Summary
	Slide 42: Summary – API constraints
	Slide 43: Q & A
	Slide 44

