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Who Am I?

• Udi Lavi
• C++ developer since 2000 (mainly on Windows)
• Simulators infrastructure @ Elbit
• Technical code quality reviewer:

• Standards / Portability / Performance / Maintainability / …
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My “world”

• Simulation SDK – infrastructure & tools (integration / configuration)
• Mainly C++98 (a constraint by some projects)
• Variety of projects requirements:

• Scale & resources – CPU / memory / computers
• Environments – Embedded / Cloud / PC
• OS & Architecture – (x32 & x64) / Endian
• Libraries linkage – Shared (.dll / .so) / Static (environment dependnent)

• Other considerations
• Security standards
• Backward compatibility
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Outline

Introduction to pure interface
• What’s a pure interface
• Incentive

Creating pure interfaces in C++
Migration case study – cost & profit
Performance
Restrictions – API Evolution & Backward Compatibility
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Before

Many calls for support
Long builds

• Dependency prevented shortcuts
• Shortcuts → extra support calls

Long support time
Waiting a few days for support
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Leveraging Code Quality

Standards enforcement (Security / Style / Formatting)
Static / Dynamic analysis
Warning as errors
Unused code elimination (+ code coverage)
Optimization & Performance (+ profilers)
Portability (OS / Endian / x32/x64)
CI/CD automation
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Leveraging Code Quality – cont.

•Pure interface

• Encapsulation
• No visible private data

• Refactoring → Automatic regression tests
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After

Less calls for support
Fast versioned hotfix release

• ~1 hour after problem is resolved
• No build of user’s project

Fast support / less regressions
Fast response

• Usually immediately / same day
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Let’s Move To
Pure Interface
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Let’s Move To Pure Interface

• Team Leader: Let’s move our API to pure interface!
• Me: Are you nuts?

It’s a lot of work
It has a performance tradeoff

• Why?

(V)
(?)
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Incentive – The Security Guard

Security guard: Good morning.
May I have your wallet please?

Visitor: Why do you need my wallet?
Security guard: I need to identify who you are.
Visitor: Oh, so you just need my ID card.
Security guard: Give me your wallet, I’ll take what I need.

Visitor: *I don’t feel comfortable about it*
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Moral

• We do not wish to expose more than we need to
• Some things are better kept private

• Some things better remain unexposed
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Pure Interface
What’s it all about

13



Definitions

• Abstract Class
• A class that cannot be instantiated directly (only by derived)
• Contains at least one pure virtual function

• Pure Interface
• An abstract class containing only pure virtual functions

• Implementation – only in derived class(es)
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Incentive – Encapsulation

•Maintainability – Hiding implementation details
•Usability

• Users see only what they need
• No forbidden API
• No cluttered huge API

• Improves Testability
• Easier to make doubles
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Incentive – Decoupling

•Reduced dependency
• Internal changes are invisible

•Easy hotfixes / versions releases
• Reduced user rebuild (depend only on API changes)

•Potential Debug / Release mix
• Requires allocation / deallocation boundaries isolation

• Registering creation & destruction function (for plugins)
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Incentive – ABI (Application Binary Interface)

• Pure interface keeps ABI compatibility*
• At least in practice

• Potential breakers
• Cross boundary heap management (e.g. std::string)
• Some optimization flags
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Maybe we don’t need it?

• Pure interfaces might be an overkill
• Too simple product
• Internal API
• Short life-span product
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Creating
Pure Interface
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“Simple” Interfaces

SDK APIICar

CCar

Interface 
User CCarDriver

SDK side

USER side

SDK 
implementation
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Interface Example – Car_Interface.h

class ICar
{
protected:

// prevent direct destruction (and construction ???)
virtual ~ICar() = 0;

public:
virtual void Drive() = 0;

};
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Interface Example – .h (new instances)

class ICar
{
protected:

virtual ~ICar() = 0;
public:

// Heap allocation (instead of new / delete) – static functions
static ICar &CreateInstance(optional parameters);
static void ReleaseInstance(ICar *&rpIntstance);
static void ReleaseInstance(ICar &rIntstance);
virtual void Drive() = 0;

};
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Interface Example – Car_Interface.cpp

ICar &ICar::CreateInstance(optional parameters) {
CCar * const pObj = new CCar(optional parameters); // DERIVED
return *pObj;

}
void ICar::ReleaseInstance(ICar *&rpIntstance) {

delete rpIntstance; // ICar may delete ICar (BASE)
rpIntstance = NULL;

}
void ICar::ReleaseInstance(ICar &rIntstance) {

delete &rIntstance;
}
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Usage Example

Option #1
IUIntVector &rMyIds = IUIntVector::CreateInstance();
…
IUIntVector::ReleaseInstance(rMyIds);

Option #2 (for containers / data members not in MIL)
m_pMyIds = &IUIntVector::CreateInstance();
…
IUIntVector::ReleaseInstance(m_pMyIds);
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Singleton Example – .h

class ICarManager
{
public:

static ICarManager &Instance(); // SINGLETON

// Implemented in CCarManager
virtual ICar *GetFreeCar() = 0; // ICar

protected:
virtual ~ICarManager() = 0;

};
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Singleton Example – .cpp

ICarManager &ICarManager::Instance()
{

// standard singleton
static CCarManager s_cTheInstance;
return s_cTheInstance;

}
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Plugins Interface (“inverse” inheritance)

SDK API

User’s 
plugins

ICar

CCar

CCarImpl

SDK 
implementation

SDK side

USER side

CCarDriver
Using
Plugin

CBus
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Plugins – “Inverse” Inheritance

• User’s plugins – usually polymorphic
• Pimpl – Pointer to Implementation

• Pimpl hides SDK side implementation
• Interface holds a pointer to a forward declared class

• Interface
• pure-virtual – implemented by derived
• Non-virtual – delegates to pImpl
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“Inverse” Inheritance Example – .h

class CCarImpl; // forward declaration (only SDK can include its .h)
class ICar
{
private:

CCarImpl *m_pImpl;
protected:

ICar(); // Called by user derived CTOR. Constructs m_pImpl
public:

virtual ~ICar(); // public* SDK may* delete (protected otherwise)
void Drive(); // SDK delegates to pImpl->Drive();
virtual void OnDrive() = 0; // User must implement (called by SDK)
CCarImpl &GetCarImpl(); // Possibly also ‘const’ version

};
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“Inverse” Inheritance Example – .h

…
class ICar
{

…
protected:

…
virtual ~ICar(); // protected

public:
virtual void DeleteSelf () = 0; // public – delete this (EFFORT)
…

};
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Case Study
SDK – Legacy Code Migration
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Migration Cost

• Refactoring SDK API – Approx. 1 human year (~75% capacity)
• Minor part of API is not pure interface per-se

• E.g. templates (base class is pure interface)

• Migrating 1st big-scale project – Approx. 1 month:
• API stabilization
• Fixing project’s bugs / misuses

• Partial automation could reduce migration effort
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Migration result

• Usability – over 50% cut in SDK’s .h files (originally over 300)
• Reduced .h files size

• Compatibility – ABI compatibility
• VS 2010 → VS 2017
• VS 2017 → VS 2022

• Encapsulation – users are not exposed to “internals”
• No mistakes / No abuse / No surprises

• Maintainability (user) – hotfixes w/o project rebuild
• Maintainability (SDK) – detection & deletion of unreachable code
• Support – less calls & fast response
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Performance
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Virtual Function – Performance Penalties

• The penalties (might be irrelevant – next slide):
• Indirect Call – function’s address lookup in virtual table at runtime [~0]

• No build time determination of function address [+]

• Cache Miss – potential for additional cache miss (vtable not in cache) [+++]

• Penalties are generally small

• Often benefits outweigh penalties

• Performance usually goes unnoticed in other places w/o benefits:
• Allocations / chattiness in loops / CTOR & copy
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Optimized Performance

• Plugins – methods are virtual anyway

• Spatial locality – eliminates cache miss impact for consecutive calls
• Loops – SDK – mostly NON-polymorphic interfaces

• Chattiness – calls on same object

• Devirtualization (+ optional inline)
• Internal use of CCar (instead of ICar)

• ‘final’ keyword

• Optimization
• PGO – Profile Guided Optimization

• WPO / LTO – Whole Program Optimization / Link Time Optimization
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Restrictions
API Evolution & Compatibility
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API Changes Effects – No User Build

• Indirect new & delete – hiding DTOR
• Adding member functions

• Virtual methods – at end of class [vtable order]
• Static member functions – anywhere

• Using only interfaces & primitive types (no templates / STL)
• No data members (optional pImpl)
• No change to plugins interfaces [vtable order]
• No methods deletion (can use DEPRECATED keyword in VS)
• Can’t have:

• postfix iteration  /  copy-CTOR
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API Changes Effects – User Modifications

• Cases requiring user’s code modifications
• Usage of new methods / classes
• Renamed methods / classes
• API deletion / modifications (e.g. new parameters w/o default)
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API Changes Effects – User Build (only)

• Cases requiring user recompilation
• Change in methods order (changed vtable)
• Adding parameters with default (changes signature)
• Adding overloading for existing methods (may eliminate previous cast)
• Modified API templates (changed implementation)
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Summary

• A way to hide implementation details
• Makes code more robust & maintainable
• Improves productivity

• Suitable for “products” between development Groups
• Fits design principles of encapsulation & decoupling

• Effort may pay off (It did in our case)
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Summary – API constraints

• Methods – pure virtual / static (otherwise delegate to m_pImpl)
• Types – primitives & interfaces
• Plugins – m_pImpl
• Object Lifetime

• CreateInstance() / ReleaseInstance()
• Instance() + some kind of “getter” – e.g. GetFreeCar()
• Prevent access to DTOR

• Order (private / protected / public)
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Q & A
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END
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