
Implementing
Ranges and Views

Roi Barkan
Core C++ 2024

Slides

https://docs.google.com/presentation/d/1Be2D63EtMdY05LfwVvbbzRn6OnhjAPoJvA1b4LS2IFY/present

Hi, I’m Roi
● Roi Barkan (he/him) - רועי ברקן
● I live in Tel Aviv 🎗
● C++ developer since 2000
● SVP Development & Technologies @ Istra Research

○ Finance, Low Latency, in Israel
○ careers@istraresearch.com

● Always happy to learn and explore
○ Please - ask questions, make comments

Slides

mailto:careers@istraresearch.com
https://docs.google.com/presentation/d/1Be2D63EtMdY05LfwVvbbzRn6OnhjAPoJvA1b4LS2IFY/present

roi@istraresearch.com

Outline
● Ranges and Views - Brief Intro

○ What are they
○ What’s cool about them
○ Views we currently have

● Implementation Details - Several Perspectives
○ Object ⇌ Algorithm ⇌ Data
○ Concepts and Selection/Constraints
○ Lazy ⇌ Eager

● Case Study

3

Ranges and Composition

4

roi@istraresearch.com

Ranges is a Breakthrough Library
● One of C++20 big-four features
● Rests on decades of existing libraries and experience

○ C++98 iterator-based algorithms
○ Fundamentals of functional / vectoric languages (APL, BQN, R, Julia, NumPy) Conor

Hoekstra
○ Libraries of similar languages (D, Rust, Java) Barry Revzin, Alexandrescu BoostCon 2009.

● Main Innovation - Composability
○ Many algorithms take ranges as input and return ranges as output

■ Opposed to in-place or output-iterator nature of C++98 algorithms
○ Range Adaptors - algorithms encalsupated as ‘lazy ranges’ (views)

■ Algorithms as composable objects - ‘expression templates’
○ Projections - unary transformations of the ranges we inspect.

5

https://youtu.be/qEywreN02ng
https://youtu.be/qEywreN02ng
https://youtu.be/95uT0RhMGwA
https://archive.org/details/AndreiAlexandrescuKeynoteBoostcon2009

roi@istraresearch.com

Terminology
● Range - Abstraction for a sequence of elements

○ begin-iterator and end-sentinel
● Range Algorithm - Function operating on ranges

○ Evolved from C++98 iterator based algorithms
○ Input: one or more ranges; potentially more arguments
○ Output: anything. If range: either in-place or via “output-iterator” or a subrange

● View - Ranges that are “cheap” to pass/hold
○ constant-time move, if-copyable-then-const-time (semantic nature →

enable_view<Rng>)
● Range-Adaptor - range-to-range manipulations

○ Most adaptors are views and reside in std::ranges::views
○ View adaptors in the STL are ‘lazy’.
○ Adaptors are meant for chaining. The cheapness of views eases chain creation

6

roi@istraresearch.com

Composability of Ranges
● Chaining algorithms due to range arguments and results

ranges::reverse(ranges::search(str,"abc"sv));godbolt
● Views as composable lazy ranges

str | views::split(' ') | views::take(2);godbolt
● Views have a value/algorithm duality

auto square_evens =
 views::filter([](auto x) { return int(x) % 2 == 0; }) |
 views::transform([](auto x) { return x * x; });godbolt

● Simple combinations can enrich our vocabulary:
auto histogram =
 views::chunk_by(std::equals{}) |
 views::transform([](const auto& rng) {
 return make_pair(begin(rng), distance(rng));};

7

https://godbolt.org/z/933voGTd1
https://godbolt.org/z/dfdM8Ts9s
https://godbolt.org/z/8YqKf7xhM

roi@istraresearch.com

The Views in the Standard (C++20/C++23*/C++26**)
● Factories/Generators: empty, single, iota, repeat*, (std::generator*)
● Rank preserving: all, filter, transform, take{_while},

drop{_while}, reverse, stride*, adjacent_transform*, (counted)
● Rank preserving - variadic→tuples: zip*, cartesian_product*
● Rank decreasing - tuples: elements, keys, values
● Rank decreasing - variadic: zip_transform*, concat**
● Rank decreasing - ranges: join{_with*}
● Rank increasing - tuples: enumerate*, adjacent*
● Rank increasing - ranges: {lazy_}split, slide*, chunk{_by}*
● Committee plan for C++26 is in P2760

8

Details

http://wg21.link/P2760

Adaptor Chain Fundamentals

9

roi@istraresearch.com

Creating Composition Chains
● Adaptors support nesting as well as pipeline/infix composition

○ views::take(views::split(str, ' '), 2)

equivalent to
str | views::split(' ') | views::take(2)godbolt

● RangeAdaptorClosure: chains without a starting range
○ Objects that exist to be chained to some range
○ Semantically they are generic algorithms, not ranges
○ std::ranges::range_adaptor_closure is a CRTP helper for creating adaptors that

have this nesting ⇌ pipeline duality.

10

https://godbolt.org/z/qWoM8sjas

roi@istraresearch.com

Simplest Range Adaptor
struct First : range_adaptor_closure<First> {

 constexpr auto operator()(forward_range auto&& rng) const {

 return subrange(begin(rng), empty(rng) ? begin(rng) : next(begin(rng)));

 }

};

constexpr First first;

int main() {

 string s = "aa bb cc";

 auto x = s | split(' ');

 println("{}", x | first);

 return 0;

}

godbolt

Reference may dangle

11

https://godbolt.org/z/fedc8rx5x

roi@istraresearch.com

Dealing with Dangling
● Chains involve creation (and destruction) of temporary objects
● Solution - aggregate the chain into “expression templates”:

○ typeid("x"s | split(' ') | take(3)) ≈ take_view<split_view<string>>

● Adaptors themselves are typically small and cheap to pass as the chain
grows

● Ranges can be expensive to pass → hence we use Views.

12

roi@istraresearch.com

Digression: Best Implementation of first
namespace stdv = std::views;

constexpr auto first = stdv::take(1);

int main() {

 string s = "aa bb cc";

 auto x = s | split(' ') | first;

 println("{}", x);

 return 0;

}

godbolt

13

Power of Composition

https://godbolt.org/z/3M1xsd5sM

roi@istraresearch.com

template <view Inner> requires forward_range<Inner>

class FirstItemView : public view_interface<FirstItemView<Inner>> {

 [[no_unique_address]] Inner inner;

 public:

 constexpr FirstItemView(Inner inner_) : inner(std::move(inner_)) {}

 constexpr auto begin() { return std::ranges::begin(inner); }

 constexpr auto end() { return empty(inner) ? begin() : next(begin()); }

 constexpr std::size_t size() { return empty(inner) ? 0 : 1; }

};

template <forward_range Range>

FirstItemView(Range&&) -> FirstItemView<views::all_t<Range>>;

struct First : range_adaptor_closure<First> {

 template<forward_range Rng>

 constexpr auto operator()(Rng&& rng) const { return forward<Rng>(FirstItemView{rng});}

};godbolt

Simplest Range Adaptor + View

14

https://godbolt.org/z/YhnWoj8eG

roi@istraresearch.com

Details About Views
● view_interface - helper CRTP which opts-in to the view concept
● Constructor - pass inner view by-value, std::move() inside
● begin()/end() - must be implemented.

○ const correctness is tricky (see Nico Josuttis)

● size() - constant-time, opt-in as a sized_range.
○ view_interface provides size() if {end() - begin();} is valid.

● Deduction guide - use views::all_t to allow non-view inputs
○ more about all_t in the next slide

● Range adaptor closure - simply return the view.
○ Some adaptors can have optimizations here, e.g. reverse | reverse.

15

https://youtu.be/O8HndvYNvQ4

roi@istraresearch.com

Lifetime Management with views::all
● Chains of adaptors need to outlive their base range (otherwise UB).
● STL uses value categories (lvalue vs. rvalue) to try and avoid such cases

○ ref_view - A view that points to another range (reference semantics), and cannot be
constructed if the range is rvalue (about to go away)

○ owning_view - A view that takes ownership of another range (moves it inside the view),
and can be constructed only from rvalues. Move-only semantics (like unique_ptr).

● views::all(rng) will return one of 3 different types of views:
○ If rng is a view - simply return it
○ else-if rng is an lvalue - return a ref_view pointing to it (be careful of lifetimes
○ else return an owning_view that now owns the contents of the range.

● Range adaptor views in the STL use views:all to assist them.

16

roi@istraresearch.com

Examples - views, all
 //temporaries create an owning view

 static_assert(not view<decltype(string{""})>);

 static_assert(view<decltype(string{""}| all)>);

 static_assert(is_same_v<decltype(string{""}| all),

 owning_view<string>. >);

 //lvalues create a ref view

 string s = "some string";

 static_assert(not view<decltype(s)>);

 static_assert(view<decltype(s | all)>);

 static_assert(is_same_v<decltype(s | all),

 ref_view<string>. >);godbolt

17

https://godbolt.org/z/hjrjdc3q6

roi@istraresearch.com

Examples - views, all (2)
 //views stay views

 auto x = s | split(' ');

 static_assert(view<decltype(x)>);

 static_assert(view<decltype(x | all)>);

 static_assert(is_same_v<decltype(x | all),

 decltype(x)>);

 //Careful - all_t<array> can be expensive-to-move

 static_assert(not view<decltype(array<int,1000>{})>);

 static_assert(view<decltype(array<int,1000>{}| all)>);

 static_assert(is_same_v<decltype(array<int,1000>{}| all),

 owning_view<array<int,1000>>. >);

 static_assert(sizeof(decltype(array<int,1000>{}| all)) >= 4000);godbolt

18

https://godbolt.org/z/hjrjdc3q6

roi@istraresearch.com

Range Adaptor Iterators - Being Lazy
● Most views implement their own iterator (and/or sentinel) types, and

achieve their functionality through the iterator member functions
○ transform - utilizing operator*()
○ filter/stride/reverse - utilizing operator++()
○ take_while - utilizing operator!=(const sentinel&)
○ chunk/split - utilizing operator*() and operator++().

● The lazy approach has many benefits
○ Pay only for what you need
○ Better support for potentially infinite ranges
○ More data locality and less need for extra RAM
○ Compiler known expression-templates have potential for performance gains.

19

roi@istraresearch.com

See Barry About the Iterators

20

CPPP21

Take(5)

https://youtu.be/95uT0RhMGwA
https://youtu.be/dvi0cl8ccNQ

roi@istraresearch.com

Range Categories and Refinements

21

● Ranges are categorized by their power of iteration, similar to the C++98
iterator category model

○ output, input → forward → bidirectional → random-access → contiguous
○ Similarly to C++98 category is associated via opt-in of iterator_category tags.

● On top of the power of iteration, ranges have additional orthogonal
refinements:

○ borrowed - iterators can outlive the range. opt-in enable_borrowed_range
○ sized - number of elements in amortized constant time. opt-out disable_sized_range
○ common - begin() and end() return the same type
○ constant - range into read-only values.

● Range Adaptors must correctly publish their effect on their input.

roi@istraresearch.com

Motivation of the Categories- Algorithm Selection
● Sometimes the same goal can be achieved in several ways

○ ranges::ssize - returns a signed integer equal to the size of a range
○ ranges::distance - returns the distance between the beginning and end of a

range
○ ssize only works for sized ranges (constant-time calculation)

distance allows linear calculation if necessary. Ben Deane recommends it.
● The library uses concepts to constrain which ranges are applicable for

which algorithm/view, and to know the best method of reaching the
intended goal

● Before C++20 other mechanisms were used to achieve this goal - and with
concepts we have a way to be more precise and more flexible where
needed.

22

https://youtu.be/V5SCJIWIPjk?t=585

roi@istraresearch.com

Digression - How Lazy are We
● Recall histogram. How many passes does it perform over the data

auto histogram =
 views::chunk_by(std::equals{}) |
 views::transform([](const auto& rng) {
 return make_pair(begin(rng), distance(rng));}

● Intuitively a single pass is enough.
● Depends on if range_reference_t<chunk_by_view<...>> is sized

○ i.e. depends on if subrange<...> is sized.
○ Could potentially be controlled via subrange_kind but not possible in existing adaptors

● Alternative implementation can enumerate and then chunk the pairs and
transform the subranges with a single pass.

23

roi@istraresearch.com

Range/Iterator const Correctness
● Remember that iterators have indirect semantics.
● Still, ranges were meant to differentiate between iterator and

const_iterator for ‘deep’ constness.
● Views are thus allowed to differentiate and have 2 different iterator types.
● C++23 now has std::basic_const_iterator which can be used as a

drop in iterator adaptor.
● Views are notoriously tricky (bad) when it comes to const-correctness

○ Due to caching behavior
○ Due to owning_view vs. ref_view being so interchangeable
○ See Nico Josutis.

24

https://youtu.be/O8HndvYNvQ4

roi@istraresearch.com

Iterator Customization Points
● Apart of the basic operators (*, !=, ++, –, +=, ...), iterators are allowed

implement two more functions, which the ranges library must use for
their purpose:

● iter_move(iterator) - instead if std::move(*iterator)
● iter_swap(it1, it2)- instead if std::ranges::swap(*it1, *it2)
● Main motivation: proxy-iterators (e.g. zip_view)

○ More on that from Jacob Rice.

● Typically implemented as “hidden friends” and invoked via
std::ranges::iter_{move,swap} - which are CPOs

25

https://youtu.be/4YIUO-3HjVs

roi@istraresearch.com

CPO - Customization Point Objects
● Customization points - ways in which a library (ranges) allows its users

(specific range-adaptor implementers) to dictate how it behaves in certain
cases.

● Before C++20 the STL had “clunky” customization point mechanisms
○ Template specialization (e.g. std::hash) [unord.hash]
○ Overload resolution and ADL (e.g. std::swap) [swappable.requirements].

● CPOs are actually objects (global variables) with template operator()
function which knows to perform the correct search for customized
implementations (typically via if constexpr or requires clauses)

○ More on that from Gašper Ažman.

26

https://eel.is/c++draft/unord.hash
https://eel.is/c++draft/swappable.requirements
https://youtu.be/T_bijOA1jts

Case Study

27

roi@istraresearch.com

Views for Sorted Ranges (More Ranges Please)

● Suggestion - views for merge, set_union, set_intersection,
set_{symmetric_}difference

○ Most algorithms can benefit from multi-input implementations
○ Heap (priority_queue) is needed for efficient set_union, merge, ….

● STL contains several algorithms for sorted ranges: {inplace_}merge,
includes, set_{union,intersection,{symmetric_}difference}

○ Also search algorithms: {upper,lower}_bound, equal_range, (unique).
● All the operations are lazy in nature
● Ranges-v3 has views for set_{union,intersection,{symmetric_}difference}

with 2 input ranges
● D-lang has merge and multiWayMerge.

28

https://docs.google.com/presentation/d/1ItAp-qX71nBUC3VjyonfPPmomzSld7sOSR01ZPopR0s/present
https://github.com/ericniebler/range-v3/blob/master/include/range/v3/view/set_algorithm.hpp
https://dlang.org/phobos/std_algorithm_sorting.html#.merge
https://dlang.org/phobos/std_algorithm_setops.html#.MultiwayMerge

roi@istraresearch.com

Implementation Approach
● Every STL algorithm with an output-iterator result can be conceptually

converted to a lazy range-adaptor view.
● Basic approach - the unified iterator holds all sub-iterators, an indication

of the ‘current’ one and a pointer to the range.
○ Key idea is that every call to operator++() should iteratively increment the lowest

sub-iterator until a condition (based on the specific algorithm) is satisfied.

● Various details and opportunities exist for the different algorithms

29

roi@istraresearch.com

Set Operation Details
● begin() in constant-time

○ Trivial for union, merge. Caching needed for intersection, difference.

● Iterator category
○ input iteration seems enough (single pass)
○ forward/bidirectional iteration can be preserved - bidirectional needs a second heap.
○ random-access on either input can be utilized, mostly for intersection and difference (e.g.

lower_bound)
○ random-access cannot be preserved.

● common_range can be preserved.
● sized_range can be preserved for merge.

30

roi@istraresearch.com

Set Operations on Multiple Inputs
● Variadic (compile time) input-count should be simple

○ Potentially use array<variant<iterator_t<Views>…>, sizeof...(Views)> with
heap operations like make_heap, pop_heap, push_heap.

● Dynamic Range-of-Ranges is more tricky due to potential RAM needs.
Potential approaches:

○ Take a random-access container as extra argument.
○ Take a (PMR) allocator as extra argument.
○ Expect the input range (of ranges) to be random-access and use it (like D-lang

multiWayMerge)
 auto carsByPrice =
 carsByMakerThenPrice | chunk_by([](const Car& a, const Car& b) {
 return a.maker == b.maker;
 }) | to<vector> |
 merge([](const Car& a, const Car& b) { return a.price < b.price; });

31

https://dlang.org/phobos/std_algorithm_setops.html#.MultiwayMerge

roi@istraresearch.com

Alternative Approach - std::generator
● C++23’s first library addition utilizing coroutines.
● A generator exposes a coroutine with co_yield calls as a view.
● Main advantage - simplicity:

○ All the intermediate state can be stored in variables
○ Procedural style instead of callback style
○ I don’t think one generator can be implemented for all output-iterator range alrogrithms

- “the coloring problem”.

● Main disadvantages:
○ Exposes an input_range, not more
○ Performance is compiler/optimizer dependent.

32

roi@istraresearch.com

Summary
● The C++ ranges library is an exemplar of composability
● Ranges were developed to be enhanced and extended
● Implementing ranges code requires know-how

○ Not rocket science

● Now it’s our turn

● Thank you !!
○ Questions and comments are welcome

33

Slides

https://docs.google.com/presentation/d/1Be2D63EtMdY05LfwVvbbzRn6OnhjAPoJvA1b4LS2IFY/present

Extra Slides - All Views

34

roi@istraresearch.com

Factories / Generators
namespace stdv = std::views;

stdv::empty<char> //=> []

stdv::single('+') //=> ['+']

stdv::iota(2,5) //=> [2, 3, 4]

stdv::repeat(0.3,3) //=> [0.3, 0.3, 0.3]

35

godbolt

https://godbolt.org/z/GK7WjKW7r

roi@istraresearch.com

Rank Preserving - 1/2
auto not5 = [](int i){return i != 5;};

auto mult2 = [](int i){return i * 2;};

auto iota2_10 = stdv::iota(2,10);

iota2_10 | stdv::all //=> [2, 3, 4, 5, 6, 7, 8, 9]

iota2_10 | stdv::filter(not5) //=> [2, 3, 4, 6, 7, 8, 9]

iota2_10 | stdv::transform(mult2) //=> [4, 6, 8, 10, 12, 14, 16, 18]

iota2_10 | stdv::take(6) //=> [2, 3, 4, 5, 6, 7]

iota2_10 | stdv::drop(6) //=> [8, 9]

36

godbolt

https://godbolt.org/z/d8r7GT94M

roi@istraresearch.com

Rank Preserving - 2/2
auto not5 = [](int i){return i != 5;};

auto iota2_10 = stdv::iota(2,10);

iota2_10 | stdv::take_while(not5) //=> [2, 3, 4]

iota2_10 | stdv::drop_while(not5) //=> [5, 6, 7, 8, 9]

iota2_10 | stdv::reverse //=> [9, 8, 7, 6, 5, 4, 3, 2]

iota2_10 | stdv::stride(3) //=> [2, 5, 8]

iota2_10 | stdv::adjacent_transform<2>(std::plus{})

 //=> [5, 7, 9, 11, 13, 15, 17]

37

godbolt

https://godbolt.org/z/d8r7GT94M

roi@istraresearch.com

Rank Preserving - Variadic ⇒ Tuples
auto iota2_7 = stdv::iota(2,7);

auto iota2_4 = stdv::iota(2,4);

auto iota6_9 = stdv::iota(6,9);

stdv::zip(iota2_7, iota6_9) //=> [(2, 6), (3, 7), (4, 8)]

stdv::cartesian_product(iota2_4, iota6_9) //=> [(2, 6), (2, 7), (2, 8),

 (3, 6), (3, 7), (3, 8)]

38

godbolt

https://godbolt.org/z/dPb8r36qP

roi@istraresearch.com

Rank Decreasing - Tuples
auto the_zip = stdv::zip(iota2_7, iota6_9, "abcdef"sv);

 //=> [(2, 6, 'a'), (3, 7, 'b'), (4, 8, 'c')]

the_zip | stdv::keys //=> [2, 3, 4]

the_zip | stdv::values //=> [6, 7, 8]

the_zip | stdv::elements<2> //=> ['a', 'b', 'c']

39

godbolt

https://godbolt.org/z/eYPdMzqYr

roi@istraresearch.com

Rank Decreasing - Variadic
auto iota2_7 = stdv::iota(2,7); auto iota6_9 = stdv::iota(6,9);

stdv::zip(iota2_7, iota6_9) //=> [(2, 6), (3, 7), (4, 8)]

stdv::zip_transform(iota2_7, iota6_9, std::multiplies{})

 //=> [12, 21, 32]

stdv::concat(iota2_7, iota6_9) //=> [2, 3, 4, 5, 6, 6, 7, 8]

40

godbolt

https://godbolt.org/z/KbY8x3aMb

roi@istraresearch.com

Rank Decreasing - Ranges
vector{"hey"sv, "C++"sv} | stdv::join

 //=> ['h', 'e', 'y', 'C', '+', '+']

(vector{"hey"sv, "C++"sv} | stdv::join_with(':'))

 //=> ['h', 'e', 'y', ':', 'C', '+', '+]

41

godbolt

https://godbolt.org/z/G5PjKevzP

roi@istraresearch.com

Rank Increasing - Tuples
"hey"sv | stdv::enumerate

 //=> [(0, 'h'), (1, 'e'), (2, 'y')]

"hello"sv | stdv::adjacent<3>

 //=> [('h', 'e', 'l'), ('e', 'l', 'l'), ('l, 'l', 'o')]

42

godbolt

https://godbolt.org/z/qjYx7r66a

roi@istraresearch.com

Rank Increasing - Ranges
"hey C++"sv | stdv::split(' ') //=> [['h', 'e', 'y'], ['C', '+', '+']]

"hey C++"sv | stdv::lazy_split(' ')

 //=> [['h', 'e', 'y'], ['C', '+', '+']]

"hello"sv | stdv::slide(3) //=> [['h', 'e', 'l'], ['e', 'l', 'l'],

 ['l, 'l', 'o']]

"hey C++"sv | stdv::chunk(3) //=> [['h', 'e', 'y'], [' ', 'C', '+'],

 ['+']]

"hello C++"sv | stdv::chunk_by(equal_to{})

 //=> [['h'], ['e'], ['l', 'l'], ['o'], [' '], ['C'], ['+', '+']]

43

godbolt

https://godbolt.org/z/oaxv6aE4x

