
Core C++ 2024

C++ Fundamentals:
Object-Oriented

Programming with C++
By Nathanel Ozeri Green

© 2024 Nathanel Ozeri, All Rights Reserved.

About me - Nathanel Ozeri Green

Programmer,

Currently working on my own venture

Trainer and Consultant At

Core C++ 2024 – Object Oriented Programming 2© 2024 Nathanel Ozeri, All Rights Reserved.

Credit Note

Talk and slides are based on

Back to Basics: Object-Oriented Programming in C++ by Amir Kirsh - CppCon 2022

With Amir's kind permission, I've adapted and expanded upon his ideas to create this presentation.

Core C++ 2024 – Object Oriented Programming 3© 2024 Nathanel Ozeri, All Rights Reserved.

https://www.youtube.com/watch?v=_go74QpFPAw

Goals

C++ OOP Basics

We'll explore the fundamental concepts of Object-Oriented

Programming (OOP) in C++.

Alternative Approaches

We'll discuss the alternatives to OOP and the tradeoffs

involved.

Core C++ 2024 – Object Oriented Programming 4© 2024 Nathanel Ozeri, All Rights Reserved.

Part 1

1 Foundation

2 Crash Syntax Course

3 Inheritance

We'll explore some of its concepts and how it relates to

polymorphism.

Core C++ 2024 – Object Oriented Programming 5© 2024 Nathanel Ozeri, All Rights Reserved.

Object Oriented

Programming

Data

Core C++ 2024 – Object Oriented Programming 6© 2024 Nathanel Ozeri, All Rights Reserved.

Object Oriented

Programming

Data

Operations

Core C++ 2024 – Object Oriented Programming 7© 2024 Nathanel Ozeri, All Rights Reserved.

Classes and Objects

Class

A class is a blueprint or template for creating objects. It defines

the structure and behavior of an object.

Object

An object is an instance of a class. It's a real-world entity

created from the class blueprint.

class Widget { … }; // describes widget, nothing born yet

int main() {

Widget w; // an actual object is created

}

Core C++ 2024 – Object Oriented Programming 8© 2024 Nathanel Ozeri, All Rights Reserved.

Stick to what you do

Focus

A class should have a clear and

defined purpose

Cohesion

All the members of a class should

be related to its primary

responsibility.

Testability

Classes with single responsibilities

are easier to test

Every class takes care of its own business

Core C++ 2024 – Object Oriented Programming 9© 2024 Nathanel Ozeri, All Rights Reserved.

Single Responsibility

A class should only have a single responsibility

Core C++ 2024 – Object Oriented Programming 10© 2024 Nathanel Ozeri, All Rights Reserved.

A crash syntax course

Core C++ 2024 – Object Oriented Programming 11© 2024 Nathanel Ozeri, All Rights Reserved.

Class Point

class Point {

int x, y;

public:

Point(int x1 = 0, int y1 = 0): x(x1), y(y1) {}

void set(int x1, int y1) {

x = x1;

y = y1;

}

void move(int diffX, int diffY);

void print() const { std::cout << "x = " << x << ", y = " << y; }

};

 don’t forget the semicolon!
Core C++ 2024 – Object Oriented Programming 12© 2024 Nathanel Ozeri, All Rights Reserved.

Class Point - usage

int main() {

Point p1;

p1.set(3, 7);

p1.move(2, 2);

p1.print();

const Point p2(10, 5);

// p2.set(10, 5);

// p2.move(2, 2);

p2.print();

}

Core C++ 2024 – Object Oriented Programming 13© 2024 Nathanel Ozeri, All Rights Reserved.

Privileges ("Access Modifiers")

public

Public members are accessible from

anywhere with proper context, like other

classes or functions.

protected

Protected members are accessible only

within the class itself and its derived

classes.

private

Private members are only accessible

from within the class definition.

Core C++ 2024 – Object Oriented Programming 14

5

© 2024 Nathanel Ozeri, All Rights Reserved.

Privileges - class and struct

Default Privilege

• `class` has a default private access specifier

• `struct` has a default public access specifier

Default Inheritance

• `class` inherits from its base class privately by default

• `struct` inherits from its base class publicly by default .

Core C++ 2024 – Object Oriented Programming 15© 2024 Nathanel Ozeri, All Rights Reserved.

Data members

The data the class manages

1 Object Data

Each object has its own copy of

the data mebers

2 Data Privacy

Data members should be private,

preventing direct external access.

3 Initialization

Primitive data types must be

explicitly initialized. (No default

initialization)

Core C++ 2024 – Object Oriented Programming 16© 2024 Nathanel Ozeri, All Rights Reserved.

Member functions (= "methods")

The operations that can be preformed on an object of this type

1 Privileges

Might be public/ protected or private.

2 Scope

Are called with an object ("the caller")

3 Data access

Can access the data members - of the calling object

4 Size

Is not part of the object size

Core C++ 2024 – Object Oriented Programming 17© 2024 Nathanel Ozeri, All Rights Reserved.

Object size

1 Members

The size of an object includes the

size of its data members

2 Functions

Functions are not included in the

object's size.

3 Inheritance

When a class inherits from a base

class, its size includes the size of

the base class

4 Additional Data

May include additional parts, e.g. pointer to vtable

(discussed in another lesson)

5 Padding

The compiler may add padding to ensure proper

alignment of data members (cppreference)

Core C++ 2024 – Object Oriented Programming 18© 2024 Nathanel Ozeri, All Rights Reserved.

https://en.cppreference.com/w/cpp/language/object

header and cpp

.h file

Contains the class declaration, including the class name,

member variables, and member function prototypes.

.cpp file

Contains the function definitions, where the actual

implementation of the member functions is written. Includes

the #include directive for the corresponding header file.

Core C++ 2024 – Object Oriented Programming 19© 2024 Nathanel Ozeri, All Rights Reserved.

header and cpp

// .h file

class Point {

int x, y;

public:

void set(int, int); // declaration only

void print() const { std::cout << "x = " << x << ", y = " << y; }

};

// .cpp file

#include "Point.h"

void Point::set(int x1, int y1) {

x = x1;

y = y1;

}

Core C++ 2024 – Object Oriented Programming 20© 2024 Nathanel Ozeri, All Rights Reserved.

this

The `this` keyword is a special pointer that points to the current object.

struct A {

void printAddress() { std::cout << this << std::endl; }

};

int main() {

A a;

std::cout << &a << std::endl;

a.printAddress();

}

Core C++ 2024 – Object Oriented Programming 21© 2024 Nathanel Ozeri, All Rights Reserved.

Constructors

Default Constructor

The compiler provides a default

constructor if you don't define any.

Parameterized Constructors

Constructors can accept parameters

to initialize objects with different

values.

Constructor Overloading

Multiple constructors with different

signatures allow flexible object

initialization.

Constructor Delegation

Constructors can call other

constructors in the same class

(C++11).

Default Parameters

Can use default parameters - as any

other method in C++

Initialization list

Used for initialization of members as

well as base class(es)

Core C++ 2024 – Object Oriented Programming 22

10

© 2024 Nathanel Ozeri, All Rights Reserved.

Ctor init list

Efficiency

More efficient initialization, avoiding

copy operations.

Correctness

Ensures data members are initialized

before the constructor body executes.

Required Scenarios

Mandatory for initializing const,

reference, or members with no default

constructor.

Core C++ 2024 – Object Oriented Programming 23© 2024 Nathanel Ozeri, All Rights Reserved.

Ctor init list

class Point {

int x, y;

public:

Point(int x1, int y1): x(x1), y(y1) {}

void print() const { std::cout << "x = " << x << ", y = " << y; }

};

class Rectangle {

Point TL, BR;

public:

Rectangle(const Point& tl, const Point& br): TL(tl), BR(br) {}

void print() const {

std::cout << "TL: "; TL.print();

std::cout << ", BR: "; BR.print();

}

};

Init list

Init list

Core C++ 2024 – Object Oriented Programming 24© 2024 Nathanel Ozeri, All Rights Reserved.

Ctor init list - Must

1
No Default Ctor

Ensures proper initialization of objects without a default

constructor.

2
Const Members

Initializes const members, preventing modification after

initialization.

3
Reference Members

Initializes reference members, binding them to their

corresponding objects.

4
Base Class

Calls the base class constructor, ensuring correct derived object

state.

Core C++ 2024 – Object Oriented Programming 25© 2024 Nathanel Ozeri, All Rights Reserved.

Constructor delegation (C++11)

C++98

Temporary objects often lead to

redundant code and performance

issues.

C++11

Delegation reduces code duplication

and improves initialization efficiency.

Ctor Inheritance

C++11 allows derived classes to

inherit constructors from base

classes.

class Rectangle {

Point TL, BR;

public:

Rectangle(const Point& tl, const Point& br): TL(tl), BR(br) {}

Rectangle(int x1, int y1, int x2, int y2)

: Rectangle(Point(x1, y1), Point(x2, y2)) {}

};
temporary
object (C++98)

ctor delegation
(C++11)

C++11 also added ctor inheritance
Core C++ 2024 – Object Oriented Programming 26© 2024 Nathanel Ozeri, All Rights Reserved.

Copy C'tor

Correct Signature

A::A(const A& a);

Use Case

• Used when creating a copy

• Called automatically when passing objects of this class by

VALUE

Default Copy C'tor

If you don't define a copy constructor, the compiler

automatically provides a default one. This performs a member-

wise copy

Core C++ 2024 – Object Oriented Programming 27

15

© 2024 Nathanel Ozeri, All Rights Reserved.

Copy C'tor

Problematic Signature

A::A(A a);

Why?

Core C++ 2024 – Object Oriented Programming 28© 2024 Nathanel Ozeri, All Rights Reserved.

Assignment Operator

Signature

A& A::operator=(const A& a);

Assigning

Used when assigning an object of the

same type.

Not a copy C'tor

Don't confuse with Copy C'tor! They are

very similar but not the same.

Default Assignment

If you don't implement your own - you get

a default one by the compiler, which does

memberwise-assignment.

Core C++ 2024 – Object Oriented Programming 29© 2024 Nathanel Ozeri, All Rights Reserved.

Assignment Operator

Can we implement assignment as a global function?

A& operator=(A& a1, const A& a2);

Member Function

The assignment operator should be implemented as a member

function within the class. This provides the correct context for

accessing and modifying the object's data.

Global Function

Implementing the assignment operator as a global function

breaks encapsulation and leads to potential issues with

accessing private members.

Core C++ 2024 – Object Oriented Programming 30© 2024 Nathanel Ozeri, All Rights Reserved.

Assignment Operator - By Value

Can we get by value?

A& A::operator=(A a);

Core C++ 2024 – Object Oriented Programming 31© 2024 Nathanel Ozeri, All Rights Reserved.

C'tor used for Casting

Implicit Casting

C++ allows implicit casting when a constructor with a

single parameter is defined.

Const Reference

Implicit casting works when passing an object by `const`

reference, allowing for convenient type conversion.

By Value

Implicit casting also works when passing an object by

value, enabling seamless type conversions.

By Reference

However, implicit casting doesn't work when passing an

object by non-`const` reference. This prevents accidental

modifications to the original object.

Core C++ 2024 – Object Oriented Programming 32© 2024 Nathanel Ozeri, All Rights Reserved.

C'tor used for Casting

class A {

int i;

public:

A(int i1):i(i1){}

};

void f(const A& a);

// implicit casting works only for ‘const ref’ or for byval but not for byref!

int main() {

A a1(1);

A a2 = 2;

f(A(1)); // works

f((A)1); // works

f(1); // works!

a1 = 3; // works!

}

Core C++ 2024 – Object Oriented Programming 33

20

© 2024 Nathanel Ozeri, All Rights Reserved.

explicit casting

Using `explicit` promotes code clarity and reduces the risk of unintended conversions, leading to more stable and predictable code.

Use `explicit` when the c’tor doesn't get the full state! (How can you tell? Equallity)

class A {

int i;

public:

explicit A(int i1):i(i1){}

};

void f(const A& a);

int main() {

A a1(1); // ok

// A a2=2; // can't...

f(A(1)); // ok

f((A)1); // ok

// f(1); // can't...

// a1 = 3; // can't...

a1 = A(3); // ok

}

Core C++ 2024 – Object Oriented Programming 34© 2024 Nathanel Ozeri, All Rights Reserved.

const + mutable members

const

The `const` keyword prevents accidental modification of data

members within a class, promoting data integrity.

`const` member functions cannot modify the object's data

members, ensuring predictable behavior.

mutable

The `mutable` keyword allows specific data members to be

modified within `const` functions, even though the object's state

remains unchanged.

When to use?

class Array {

int arr[SIZE]{};

mutable int sum = 0;

mutable bool isSumUpdated = true;

void calcSum() const;

public:

Array() {}

// …

Core C++ 2024 – Object Oriented Programming 35© 2024 Nathanel Ozeri, All Rights Reserved.

Destructor

1 Automatic Call

The destructor is automatically called when an object is

destroyed.

2 No arguments

Takes no arguments, thus there is only one per class

~<ClassName>();

3 Usage

Usually used for resource de-allocations (but can actually

do anything)

4 Executed Point

When an object is destroyed, its destructor is called to

perform cleanup tasks

Core C++ 2024 – Object Oriented Programming 36

25

© 2024 Nathanel Ozeri, All Rights Reserved.

Destructor - When Object dies

1 Stack Objects

When a stack object goes out of scope, its destructor is

automatically invoked.

2 Heap Objects

When a heap object is explicitly deleted using `delete`, its

destructor is called before freeing the memory.

3 Global and Static

Global or static objects are destroyed when the program

terminates, triggering their destructors for final cleanup.

4 Temporary Objects

Temporary objects created during expression evaluation

are destroyed at the end of the statement that created

them.

message("hello", Point(10,10));

Core C++ 2024 – Object Oriented Programming 37© 2024 Nathanel Ozeri, All Rights Reserved.

Rule of Zero

It's the best if your class doesn't need any resource management

• No need for D'tor, Copy C'tor, Assignment Operator

• Defaults do the job (managed)

• [That includes defaults for move operations]

To Achieve that - Use properly managed data members - std::string, std containers,

std::unique_ptr, std::shared_ptr

Core C++ 2024 – Object Oriented Programming 38© 2024 Nathanel Ozeri, All Rights Reserved.

Rule of Three

Destructor Needed?

If your class needs a destructor to

manage resources, take action.

Block Copy Operations

Immediately block the copy

constructor and assignment operator.

(No TODO's)

Implement if Necessary

If you later determine you need the

copy operations, implement them.

MyClass(const MyClass&) = delete;

MyClass& operator=(const MyClass&) = delete;

Core C++ 2024 – Object Oriented Programming 39© 2024 Nathanel Ozeri, All Rights Reserved.

Rule of Five

If you implement or block any one of the five, you lose the defaults for the move operations

• Make sure to ask back for the defaults if they are fine

MyClass(MyClass&&) = default;

MyClass& operator=(MyClass&&) = default;

• [We are not going to cover RValue reference and Move semantics in this talk]

Core C++ 2024 – Object Oriented Programming 40© 2024 Nathanel Ozeri, All Rights Reserved.

Inheritance

Core C++ 2024 – Object Oriented Programming 41

30

© 2024 Nathanel Ozeri, All Rights Reserved.

Inheritance - Why?

Code Reuse

Inheritance allows you to reuse existing code, reducing

development time and effort.

We want to use both the ‘old’ class and the ‘new’ class - so we

can’t change the code of the old one

Polymorphism

We want to hold and manage objects of either type without

having to handle them differently (Person & Student)

Core C++ 2024 – Object Oriented Programming 42© 2024 Nathanel Ozeri, All Rights Reserved.

Inheritance - ctor

class Person {

// ...

public:

Person(const string& name);

// ...

};

class Student: public Person {

// ...

public:

Student(const string& name): Person(name){}

// ...

};

calling base ctor

Core C++ 2024 – Object Oriented Programming 43© 2024 Nathanel Ozeri, All Rights Reserved.

Inheritance - dtor

struct A {

~A() { cout << "~A" << endl; }

};

// B is inherited from A for non-polymorphic usage

struct B: public A {

~B() { cout << "~B" << endl; }

};

int main() {

B b;

}

Output?

~B

~A

Core C++ 2024 – Object Oriented Programming 44© 2024 Nathanel Ozeri, All Rights Reserved.

Polymorphism in C++

Polymorphism is the ability to treat different types similarly

class Pet {

public:

virtual void eat(const Food& food) = 0;

// …

};

pet.eat(food); //run time dispatching based on the calling object

any (proper) type of Foodany type of Pet
Core C++ 2024 – Object Oriented Programming 45© 2024 Nathanel Ozeri, All Rights Reserved.

virtual functions

class Pet {

//...

public:

virtual void makeSound() const = 0;

virtual ~Pet() {}

};

If Make sound is const - it must be const in all the classes to preserve the

same signature

class Dog: public Pet {

//...

public:

void makeSound() const override {

cout << "Raf raf";

}

~Dog() override {}

};

class Cat: public Pet {

//...

public:

void makeSound() const override {

cout << "mewo";

}

~Cat() override {}

};

Core C++ 2024 – Object Oriented Programming 46© 2024 Nathanel Ozeri, All Rights Reserved.

abstract classes

class Pet {

//...

public:

virtual void makeSound() const = 0;

virtual ~Pet() {}

};

makeSound method is pure virtual at Pet, which makes Pet an abstract

class

class Dog: public Pet {

//...

public:

void makeSound() const override {

cout << "Raf raf";

}

~Dog() override {}

};

int main() {

// Pet pet; // Can't create

Dog d;

Pet* p = &d

p->makeSound();

}

Core C++ 2024 – Object Oriented Programming 47© 2024 Nathanel Ozeri, All Rights Reserved.

Usage Example - Command Pattern

• Encapsulate the information needed to perform an action

• Classical for implementing Undo/Redo stack

Advantages

• Encapsulates and hides the action itself, easier to code and

maintain

Image source

Core C++ 2024 – Object Oriented Programming 48© 2024 Nathanel Ozeri, All Rights Reserved.

https://javaobsession.wordpress.com/2010/07/25/command-pattern/

OO Low-Level Design Principles

Single

Responsibility

A class should have a

single, clearly defined

purpose.

Break Down

Complexity

Large, complex entities

should be divided into

smaller, more manageable

classes.

Composition &

Inheritance

Use composition when a

class needs to use

another class. Use

inheritance when a class

extends the functionality

of another class.

Abstraction

Design your classes to be

generic and reusable,

focusing on interfaces

rather than specific

implementations.

Data Hiding

Protect your data members and

member functions.

Clear API

Provide a simple and well-defined

interface for your classes.

Rule of Zero

Aim to make your classes resource-

free, minimizing the need for explicit

memory management.

Core C++ 2024 – Object Oriented Programming 49© 2024 Nathanel Ozeri, All Rights Reserved.

Part 2

1
Beyond the Basics

We'll explore the limitations of classic OOP in C++.

2
Alternative Approaches

We'll discuss design patterns and alternative strategies.

Core C++ 2024 – Object Oriented Programming 50

35

© 2024 Nathanel Ozeri, All Rights Reserved.

Beyond the "Classic" Model

Not Just OOP

C++ is not Just an Object Oriented Language (Bjarne Stroustrup)

Alternatives and Limitations

• When and way not to use the classic encapsulation

• When to avoid or delay inheritance

Core C++ 2024 – Object Oriented Programming 51© 2024 Nathanel Ozeri, All Rights Reserved.

https://www.stroustrup.com/oopsla.pdf

Array of Structs vs. Structs of Arrays

Core C++ 2024 – Object Oriented Programming 52© 2024 Nathanel Ozeri, All Rights Reserved.

Inheritance

Inheritance is overrated

In some cases it's tricky

Sean Parent, 2013: Inheritance Is The Base Class of Evil

Core C++ 2024 – Object Oriented Programming 53© 2024 Nathanel Ozeri, All Rights Reserved.

https://www.youtube.com/watch?v=2bLkxj6EVoM

Inheritance and Liskov Substitution

Rectangle

Square

OR

Square

Rectangle

Core C++ 2024 – Object Oriented Programming 54© 2024 Nathanel Ozeri, All Rights Reserved.

Employee Inheritance (?)

Employee

Developer QAEngineer

Core C++ 2024 – Object Oriented Programming 55

40

© 2024 Nathanel Ozeri, All Rights Reserved.

Employee Inheritance (?)

Employee

Internal SubContractor

Core C++ 2024 – Object Oriented Programming 56© 2024 Nathanel Ozeri, All Rights Reserved.

Employee Inheritance (?)

Employee

Internal SubContractor

InternalDeveloper InternalQAEngineer SubDeveloper SubQAEngineer

Core C++ 2024 – Object Oriented Programming 57© 2024 Nathanel Ozeri, All Rights Reserved.

Employee Inheritance (?)

Employee

Internal SubContractor

InternalDeveloper InternalQAEngineer SubDeveloper SubQAEngineer

Developer QAEngineer

Core C++ 2024 – Object Oriented Programming 58© 2024 Nathanel Ozeri, All Rights Reserved.

Employee Inheritance (!)

Employee

EmploymentType Role

Internal SubContractor Developer QAEngineer

-employmentType
-role

Core C++ 2024 – Object Oriented Programming 59© 2024 Nathanel Ozeri, All Rights Reserved.

State Pattern

1 Encapsulate Behavior

Behavior is based on object's state

2 State Hierarchy

Allowing combination of behaviors per characteristic, with

specific State hierarchy per each.

3 Decouple State

Separate state management from the object's core structure.

https://en.wikipedia.org/wiki/State_pattern

Core C++ 2024 – Object Oriented Programming 60© 2024 Nathanel Ozeri, All Rights Reserved.

https://en.wikipedia.org/wiki/State_pattern

State Pattern

Advantages

Allowing objects to dynamically change state.

Allowing objects to have more than one state.

Core C++ 2024 – Object Oriented Programming 61© 2024 Nathanel Ozeri, All Rights Reserved.

Strategy Pattern

1 Encapsulate Behavior

Select algorithm (strategy) to be used at runtime

2 Algorithms Family

Defines a family of possible algorithms for same problem.

3 Decouple State

Separate algorithm defenition from the object's core

structure.

https://en.wikipedia.org/wiki/Strategy_pattern

Core C++ 2024 – Object Oriented Programming 62© 2024 Nathanel Ozeri, All Rights Reserved.

https://en.wikipedia.org/wiki/Strategy_pattern

Strategy Pattern

Advantages

Can be used to pick the matching/ best algorithm according to defined rules.

Algorithm selection is encapsulated and can be cached

Core C++ 2024 – Object Oriented Programming 63© 2024 Nathanel Ozeri, All Rights Reserved.

Pet Inheritance (?)

Inheritance Model

A traditional inheritance model directly inherits Dog and Cat

from Pet.

This approach might seem simple but can become problematic

when adding new pet types.

Potential Issues

Maintaining a large number of pet classes directly inherited

from Pet can be complex.

If a new pet type needs to be added, modifications to the base

class (Pet) might be required.

Pet

Dog Cat

Core C++ 2024 – Object Oriented Programming 64

45

© 2024 Nathanel Ozeri, All Rights Reserved.

Pet Inheritance - Better with State

Pet

PetType

Dog Cat

-petType

Core C++ 2024 – Object Oriented Programming 65© 2024 Nathanel Ozeri, All Rights Reserved.

Issues with Inheritance

Runtime Type Changes

Changing the type of an object at runtime [QAEngineer becoming a Developer]

Inflation of Derived Classes

As the number of derived classes grows, the inheritance hierarchy can become unwieldy, requiring ways to reduce the

total number of classes.

Solution: State/ Strategy Patterns

Exposing Internal Design

Forcing the user to be aware of the internal design details, such as which exact type to create, can make the code less

flexible and harder to maintain.

Solution: Factory Method / Abstract Factory Patterns

Core C++ 2024 – Object Oriented Programming 66© 2024 Nathanel Ozeri, All Rights Reserved.

Inheritance Design Principles

Make non-leaf classes abstract

[Scott Meyers]

making non-leaf classes abstract prevents them from being

instantiated directly

Don't derive from concrete classes

[Herb Sutter]

don't derive from concrete classes

Make virtual function private

Core C++ 2024 – Object Oriented Programming 67© 2024 Nathanel Ozeri, All Rights Reserved.

Inheritance Design Principles

Amir Kirsh:

same type represents all

User should work with a universal

type, keep your inheritance for

internal State/Strategy

stateless

Prefer to have stateless abstract

classes (“pure interfaces”)

small and specific

Data manged by base class should be

very small and very specific

Core C++ 2024 – Object Oriented Programming 68© 2024 Nathanel Ozeri, All Rights Reserved.

Polymorphism vs. Templates

Core C++ 2024 – Object Oriented Programming 69

50

© 2024 Nathanel Ozeri, All Rights Reserved.

Polymorphism vs. Templates

Implement A generic 'Volume' function for any prism

1 Based on Polymorphism 2 Based on templets

Solutions

• Polymorphism

• Templates

Core C++ 2024 – Object Oriented Programming 70

Hierarchy for functionality?

© 2024 Nathanel Ozeri, All Rights Reserved.

http://coliru.stacked-crooked.com/a/eee07feac868671d
http://coliru.stacked-crooked.com/a/2aa96fd0cd1650ba

Substitutes for Inheritance (or how to delay it)

1 Avoiding inheritance

Using: templates, composition, lambdas or just simple “duck type” with generic algorithms

list::iterator and vector::iterator do not (necessarily) share a base!

(as a side note => may use C++20 concepts to set expectations on type)

2 Inheritance of smaller things

Using State/Strategy

[Properties, Behavior, Policy]

3 Hide your inheritance

With a facade / Proxy of a one clear type

User should preferably work with one universal type

Core C++ 2024 – Object Oriented Programming 71© 2024 Nathanel Ozeri, All Rights Reserved.

To Summarize

Core C++ 2024 – Object Oriented Programming 72© 2024 Nathanel Ozeri, All Rights Reserved.

To Summarize

Object Oriented Programming is good

This is why it’s so widely used

Use with Care

Different problems may need different tools

Think of things that may change: additional future classes and usages

Core C++ 2024 – Object Oriented Programming 73© 2024 Nathanel Ozeri, All Rights Reserved.

Complex Code

Classes that do more

than one thing

Methods that do more

than one thing

or Methods that don't use helper

methods

Too much abstraction

An interface for the interface

Exposing internal design

Forcing the user to know too

much, allowing abuse

Bad design

Core C++ 2024 – Object Oriented Programming 74© 2024 Nathanel Ozeri, All Rights Reserved.

OO Low-Level Design Principles

Single

Responsibility

A class should have a

single, clearly defined

purpose.

Break Down

Complexity

Large, complex entities

should be divided into

smaller, more manageable

classes.

Composition &

Inheritance

Use composition when a

class needs to use

another class. Use

inheritance when a class

extends the functionality

of another class.

Abstraction

Design your classes to be

generic and reusable,

focusing on interfaces

rather than specific

implementations.

Data Hiding

Protect your data members and

member functions.

design decisions such as inheritance can

also be hidden in a universal holder

Clear API

Provide a simple and well-defined

interface for your classes.

Rule of Zero

Aim to make your classes resource-

free, minimizing the need for explicit

memory management.

Core C++ 2024 – Object Oriented Programming 75

55

© 2024 Nathanel Ozeri, All Rights Reserved.

Any questions before we conclude?

Core C++ 2024 – Object Oriented Programming 76© 2024 Nathanel Ozeri, All Rights Reserved.

Thank you

Core C++ 2024 – Object Oriented Programming 77© 2024 Nathanel Ozeri, All Rights Reserved.

	Slide 1: C++ Fundamentals: Object-Oriented Programming with C++
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

