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Programmer,
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Credit Note

Talk and slides are based on

Back to Basics: Object-Oriented Programming in C++ by Amir Kirsh - CppCon 2022

With Amir's kind permission, I've adapted and expanded upon his ideas to create this presentation.
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Goals

C++ OOP Basics

We'll explore the fundamental concepts of Object-Oriented 

Programming (OOP) in C++.

Alternative Approaches

We'll discuss the alternatives to OOP and the tradeoffs 

involved.
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Part 1

1 Foundation

2 Crash Syntax Course

3 Inheritance

We'll explore some of its concepts and how it relates to 

polymorphism.
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Object Oriented 

Programming

Data
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Object Oriented 

Programming

Data

Operations
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Classes and Objects

Class

A class is a blueprint or template for creating objects. It defines 

the structure and behavior of an object.

Object

An object is an instance of a class. It's a real-world entity 

created from the class blueprint. 

class Widget { … }; // describes widget, nothing born yet

int main() {

Widget w; // an actual object is created

}

Core C++ 2024 – Object Oriented Programming 8© 2024 Nathanel Ozeri, All Rights Reserved. 



Stick to what you do

Focus

A class should have a clear and 

defined purpose

Cohesion

All the members of a class should 

be related to its primary 

responsibility.

Testability

Classes with single responsibilities 

are easier to test

Every class takes care of its own business
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Single Responsibility

A class should only have a single responsibility
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A crash syntax course
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Class Point

class Point { 

int x, y;

public:

Point(int x1 = 0, int y1 = 0): x(x1), y(y1) {}

void set(int x1, int y1) {

x = x1;

y = y1;

}

void move(int diffX, int diffY);

void print() const { std::cout << "x = " << x << ", y = " << y; }

};

 don’t forget the semicolon!
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Class Point - usage

int main() {

Point p1;

p1.set(3, 7);

p1.move(2, 2);

p1.print();

const Point p2(10, 5);

// p2.set(10, 5);

// p2.move(2, 2);

p2.print();

}
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Privileges ("Access Modifiers")

public

Public members are accessible from 

anywhere with proper context, like other 

classes or functions.

protected

Protected members are accessible only 

within the class itself and its derived 

classes.

private

Private members are only accessible 

from within the class definition.
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Privileges - class and struct

Default Privilege

• `class` has a default private access specifier

• `struct` has a default public access specifier

Default Inheritance

• `class` inherits from its base class privately by default

• `struct` inherits from its base class publicly by default . 
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Data members

The data the class manages

1 Object Data

Each object has its own copy of 

the data mebers

2 Data Privacy

Data members should be private, 

preventing direct external access.

3 Initialization

Primitive data types must be 

explicitly initialized. (No default 

initialization)
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Member functions (= "methods")

The operations that can be preformed on an object of this type

1 Privileges

Might be public/ protected or private.

2 Scope

Are called with an object ("the caller")

3 Data access

Can access the data members - of the calling object

4 Size

Is not part of the object size
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Object size

1 Members

The size of an object includes the 

size of its data members

2 Functions

Functions are not included in the 

object's size.

3 Inheritance

When a class inherits from a base 

class, its size includes the size of 

the base class

4 Additional Data

May include additional parts, e.g. pointer to vtable 

(discussed in another lesson) 

5 Padding

The compiler may add padding to ensure proper 

alignment of data members (cppreference)
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header and cpp

.h file

Contains the class declaration, including the class name, 

member variables, and member function prototypes.

.cpp file

Contains the function definitions, where the actual 

implementation of the member functions is written. Includes 

the #include directive for the corresponding header file.
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header and cpp

// .h file

class Point { 

int x, y;

public:

void set(int, int); // declaration only 

void print() const { std::cout << "x = " << x << ", y = " << y; }

};

// .cpp file

#include "Point.h"

void Point::set(int x1, int y1) {

x = x1;

y = y1;

}
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this

The `this` keyword is a special pointer that points to the current object.

struct A {

void printAddress() { std::cout <<  this  << std::endl; }

};

int main() {

A a;

std::cout << &a << std::endl;

a.printAddress();

}
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Constructors

Default Constructor

The compiler provides a default 

constructor if you don't define any.

Parameterized Constructors

Constructors can accept parameters 

to initialize objects with different 

values.

Constructor Overloading

Multiple constructors with different 

signatures allow flexible object 

initialization.

Constructor Delegation

Constructors can call other 

constructors in the same class 

(C++11).

Default Parameters

Can use default parameters - as any 

other method in C++

Initialization list

Used for initialization of members as 

well as base class(es)
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Ctor init list

Efficiency

More efficient initialization, avoiding 

copy operations.

Correctness

Ensures data members are initialized 

before the constructor body executes.

Required Scenarios

Mandatory for initializing const, 

reference, or members with no default 

constructor.
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Ctor init list

class Point { 

int x, y;

public:

Point(int x1, int y1): x(x1), y(y1) {}

void print() const { std::cout << "x = " << x << ", y = " << y; }

};

class Rectangle { 

Point TL, BR;

public:

Rectangle(const Point& tl, const Point& br): TL(tl), BR(br) {}

void print() const {

std::cout << "TL: "; TL.print();

std::cout << ", BR: "; BR.print();

}

};

Init list

Init list
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Ctor init list - Must

1
No Default Ctor

Ensures proper initialization of objects without a default 

constructor.

2
Const Members

Initializes const members, preventing modification after 

initialization.

3
Reference Members

Initializes reference members, binding them to their 

corresponding objects.

4
Base Class

Calls the base class constructor, ensuring correct derived object 

state.
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Constructor delegation (C++11)

C++98

Temporary objects often lead to 

redundant code and performance 

issues.

C++11

Delegation reduces code duplication 

and improves initialization efficiency.

Ctor Inheritance

C++11 allows derived classes to 

inherit constructors from base 

classes.

class Rectangle { 

Point TL, BR;

public:

Rectangle(const Point& tl, const Point& br): TL(tl), BR(br) {}

Rectangle(int x1, int y1, int x2, int y2)

: Rectangle(Point(x1, y1), Point(x2, y2)) {}

};
temporary 
object (C++98)

ctor delegation 
(C++11)

C++11 also added ctor inheritance
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Copy C'tor

Correct Signature

A::A(const A& a);

Use Case

• Used when creating a copy

• Called automatically when passing objects of this class by 

VALUE

Default Copy C'tor

If you don't define a copy constructor, the compiler 

automatically provides a default one. This performs a member-

wise copy
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Copy C'tor

Problematic Signature

A::A(A a);

Why?
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Assignment Operator

Signature

A& A::operator=(const A& a);

Assigning

Used when assigning an object of the 

same type.

Not a copy C'tor

Don't confuse with Copy C'tor! They are 

very similar but not the same.

Default Assignment

If you don't implement your own - you get 

a default one by the compiler, which does 

memberwise-assignment. 
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Assignment Operator

Can we implement assignment as a global function?

A& operator=(A& a1, const A& a2);

Member Function

The assignment operator should be implemented as a member 

function within the class. This provides the correct context for 

accessing and modifying the object's data.

Global Function

Implementing the assignment operator as a global function 

breaks encapsulation and leads to potential issues with 

accessing private members.
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Assignment Operator - By Value

Can we get by value?

A& A::operator=(A a);
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C'tor used for Casting

Implicit Casting

C++ allows implicit casting when a constructor with a 

single parameter is defined.

Const Reference

Implicit casting works when passing an object by `const` 

reference, allowing for convenient type conversion.

By Value

Implicit casting also works when passing an object by 

value, enabling seamless type conversions.

By Reference

However, implicit casting doesn't work when passing an 

object by non-`const` reference. This prevents accidental 

modifications to the original object.
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C'tor used for Casting

class A {

int i;

public:

A(int i1):i(i1){}

};

void f(const A& a);

// implicit casting works only for ‘const ref’ or for byval but not for byref!

int main() {

A a1(1);

A a2 = 2;

f(A(1)); // works

f((A)1); // works

f(1);    // works!

a1 = 3;  // works!

}
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explicit casting

Using `explicit` promotes code clarity and reduces the risk of unintended conversions, leading to more stable and predictable  code. 

Use `explicit` when the c’tor doesn't get the full state! (How can you tell? Equallity)

class A {

int i;

public:

explicit A(int i1):i(i1){}

};

void f(const A& a);

int main() {

A a1(1);    // ok

// A a2=2;  // can't...

f(A(1));    // ok

f((A)1);    // ok

// f(1);    // can't...

// a1 = 3;  // can't...

a1 = A(3);  // ok

}
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const + mutable members

const

The `const` keyword prevents accidental modification of data 

members within a class, promoting data integrity.

`const` member functions cannot modify the object's data 

members, ensuring predictable behavior.

mutable

The `mutable` keyword allows specific data members to be 

modified within `const` functions, even though the object's state 

remains unchanged.

When to use?

class Array {

int arr[SIZE]{};

mutable int sum = 0;

mutable bool isSumUpdated = true;

void calcSum() const;

public:

Array() {}

// …
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Destructor

1 Automatic Call

The destructor is automatically called when an object is 

destroyed.

2 No arguments

Takes no arguments, thus there is only one per class

~<ClassName>(); 

3 Usage

Usually used for resource de-allocations (but can actually 

do anything)

4 Executed Point

When an object is destroyed, its destructor is called to 

perform cleanup tasks

Core C++ 2024 – Object Oriented Programming 36

25

© 2024 Nathanel Ozeri, All Rights Reserved. 



Destructor - When Object dies

1 Stack Objects

When a stack object goes out of scope, its destructor is 

automatically invoked.

2 Heap Objects

When a heap object is explicitly deleted using `delete`, its 

destructor is called before freeing the memory.

3 Global and Static

Global or static objects are destroyed when the program 

terminates, triggering their destructors for final cleanup.

4 Temporary Objects

Temporary objects created during expression evaluation 

are destroyed at the end of the statement that created 

them.

message("hello", Point(10,10));
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Rule of Zero

It's the best if your class doesn't need any resource management

• No need for D'tor, Copy C'tor, Assignment Operator

• Defaults do the job (managed)

• [That includes defaults for move operations]

To Achieve that - Use properly managed data members - std::string, std containers, 

std::unique_ptr, std::shared_ptr
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Rule of Three

Destructor Needed?

If your class needs a destructor to 

manage resources, take action.

Block Copy Operations

Immediately block the copy 

constructor and assignment operator.

(No TODO's)

Implement if Necessary

If you later determine you need the 

copy operations, implement them.

MyClass(const MyClass&) = delete;

MyClass& operator=(const MyClass&) = delete;
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Rule of Five

If you implement or block any one of the five, you lose the defaults for the move operations

• Make sure to ask back for the defaults if they are fine

MyClass(MyClass&&) = default;

MyClass& operator=(MyClass&&) = default;

• [We are not going to cover RValue reference and Move semantics in this talk]
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Inheritance
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Inheritance - Why?

Code Reuse

Inheritance allows you to reuse existing code, reducing 

development time and effort. 

We want to use both the ‘old’ class and the ‘new’ class - so we 

can’t change the code of the old one

Polymorphism

We want to hold and manage objects of either type without 

having to handle them differently  (Person & Student)
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Inheritance - ctor

class Person {

// ...

public:

Person(const string& name);

// ...

};

class Student: public Person {

// ...

public:

Student(const string& name): Person(name){}

// ...

};

calling base ctor
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Inheritance - dtor

struct A {

~A() { cout << "~A" << endl; }

};

// B is inherited from A for non-polymorphic usage

struct B: public A {

~B() { cout << "~B" << endl; }

};

int main() {

B b;

}

Output?

~B

~A
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Polymorphism in C++

Polymorphism is the ability to treat different types similarly

class Pet {

public:

virtual void eat(const Food& food) = 0;

// …

};

pet.eat(food); //run time dispatching based on the calling object 

any (proper) type of Foodany type of Pet
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virtual functions

class Pet {

//...

public:

virtual void makeSound() const = 0;

virtual ~Pet() {}

};

If Make sound is const - it must be const in all the classes to preserve the 

same signature  

class Dog: public Pet {

//...

public:

void makeSound() const override {

cout << "Raf raf";

}

~Dog() override {}

};

class Cat: public Pet {

//...

public:

void makeSound() const override {

cout << "mewo";

}

~Cat() override {}

};

Core C++ 2024 – Object Oriented Programming 46© 2024 Nathanel Ozeri, All Rights Reserved. 



abstract classes

class Pet {

//...

public:

virtual void makeSound() const = 0;

virtual ~Pet() {}

};

makeSound method is pure virtual at Pet, which makes Pet an abstract 

class

class Dog: public Pet {

//...

public:

void makeSound() const override {

cout << "Raf raf";

}

~Dog() override {}

};

int main() {

// Pet pet;  // Can't create

Dog d;

Pet* p = &d

p->makeSound(); 

}
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Usage Example - Command Pattern

• Encapsulate the information needed to perform an action

• Classical for implementing Undo/Redo stack

Advantages

• Encapsulates and hides the action itself, easier to code and 

maintain

Image source
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OO Low-Level Design Principles

Single 

Responsibility

A class should have a 

single, clearly defined 

purpose.

Break Down 

Complexity

Large, complex entities 

should be divided into 

smaller, more manageable 

classes.

Composition & 

Inheritance

Use composition when a 

class needs to use 

another class. Use 

inheritance when a class 

extends the functionality 

of another class.

Abstraction

Design your classes to be 

generic and reusable, 

focusing on interfaces 

rather than specific 

implementations.

Data Hiding

Protect your data members and 

member functions. 

Clear API

Provide a simple and well-defined 

interface for your classes.

Rule of Zero

Aim to make your classes resource-

free, minimizing the need for explicit 

memory management. 
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Part 2

1
Beyond the Basics

We'll explore the limitations of classic OOP in C++.

2
Alternative Approaches

We'll discuss design patterns and alternative strategies.
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Beyond the "Classic" Model

Not Just OOP

C++ is not Just an Object Oriented Language (Bjarne Stroustrup)

Alternatives and Limitations

• When and way not to use the classic encapsulation

• When to avoid or delay inheritance
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Array of Structs vs. Structs of Arrays
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Inheritance

Inheritance is overrated

In some cases it's tricky

Sean Parent, 2013: Inheritance Is The Base Class of Evil
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Inheritance and Liskov Substitution

Rectangle

Square

OR

Square

Rectangle
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Employee Inheritance (?)

Employee

Developer QAEngineer
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Employee Inheritance (?)

Employee

Internal SubContractor
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Employee Inheritance (?)

Employee

Internal SubContractor

InternalDeveloper InternalQAEngineer SubDeveloper SubQAEngineer
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Employee Inheritance (?)

Employee

Internal SubContractor

InternalDeveloper InternalQAEngineer SubDeveloper SubQAEngineer

Developer QAEngineer
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Employee Inheritance (!)

Employee

EmploymentType Role

Internal SubContractor Developer QAEngineer

-employmentType
-role
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State Pattern

1 Encapsulate Behavior

Behavior is based on object's state

2 State Hierarchy

Allowing combination of behaviors per characteristic, with 

specific State hierarchy per each.

3 Decouple State

Separate state management from the object's core structure.

https://en.wikipedia.org/wiki/State_pattern
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State Pattern

Advantages

Allowing objects to dynamically change state.

Allowing objects to have more than one state.
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Strategy Pattern

1 Encapsulate Behavior

Select algorithm (strategy) to be used at runtime

2 Algorithms Family

Defines a family of possible algorithms for same problem.

3 Decouple State

Separate algorithm defenition from the object's core 

structure.

https://en.wikipedia.org/wiki/Strategy_pattern
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Strategy Pattern

Advantages

Can be used to pick the matching/ best algorithm according to defined rules.

Algorithm selection is encapsulated and can be cached
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Pet Inheritance (?)

Inheritance Model

A traditional inheritance model directly inherits Dog and Cat 

from Pet.

This approach might seem simple but can become problematic 

when adding new pet types.

Potential Issues

Maintaining a large number of pet classes directly inherited 

from Pet can be complex.

If a new pet type needs to be added, modifications to the base 

class (Pet) might be required.

Pet

Dog Cat
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Pet Inheritance - Better with State

Pet

PetType

Dog Cat

-petType
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Issues with Inheritance

Runtime Type Changes

Changing the type of an object at runtime [QAEngineer becoming a Developer]

Inflation of Derived Classes

As the number of derived classes grows, the inheritance hierarchy can become unwieldy, requiring ways to reduce the 

total number of classes.

Solution: State/ Strategy Patterns

Exposing Internal Design

Forcing the user to be aware of the internal design details, such as which exact type to create, can make the code less 

flexible and harder to maintain.

Solution: Factory Method / Abstract Factory Patterns
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Inheritance Design Principles

Make non-leaf classes abstract

[Scott Meyers]

making non-leaf classes abstract prevents them from being 

instantiated directly

Don't derive from concrete classes

[Herb Sutter] 

don't derive from concrete classes

Make virtual function private
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Inheritance Design Principles

Amir Kirsh:

same type represents all

User should work with a universal 

type, keep your inheritance for 

internal State/Strategy

stateless

Prefer to have stateless abstract 

classes (“pure interfaces”)

small and specific

Data manged by base class should be 

very small and very specific
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Polymorphism vs. Templates
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Polymorphism vs. Templates

Implement A generic 'Volume' function for any prism

1 Based on Polymorphism 2 Based on templets 

Solutions

• Polymorphism

• Templates
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Substitutes for Inheritance (or how to delay it)

1 Avoiding inheritance

Using: templates, composition, lambdas or just simple “duck type” with generic algorithms

list::iterator and vector::iterator do not (necessarily) share a base!

(as a side note => may use C++20 concepts to set expectations on type)

2 Inheritance of smaller things

Using State/Strategy

[Properties, Behavior, Policy]

3 Hide your inheritance

With a facade / Proxy of a one clear type

User should preferably work with one universal type
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To Summarize
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To Summarize

Object Oriented Programming is good

This is why it’s so widely used

Use with Care

Different problems may need different tools

Think of things that may change: additional future classes and usages
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Complex Code

Classes that do more 

than one thing

Methods that do more 

than one thing

or Methods that don't use helper 

methods

Too much abstraction

An interface for the interface

Exposing internal design

Forcing the user to know too 

much, allowing abuse

Bad design
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OO Low-Level Design Principles

Single 

Responsibility

A class should have a 

single, clearly defined 

purpose.

Break Down 

Complexity

Large, complex entities 

should be divided into 

smaller, more manageable 

classes.

Composition & 

Inheritance

Use composition when a 

class needs to use 

another class. Use 

inheritance when a class 

extends the functionality 

of another class.

Abstraction

Design your classes to be 

generic and reusable, 

focusing on interfaces 

rather than specific 

implementations.

Data Hiding

Protect your data members and 

member functions.

design decisions such as inheritance can 

also be hidden in a universal holder 

Clear API

Provide a simple and well-defined 

interface for your classes.

Rule of Zero

Aim to make your classes resource-

free, minimizing the need for explicit 

memory management. 
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Any questions before we conclude?
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Thank you
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