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About

Today’s spotlight: 
Exploring best practices in embedded systems, 
with a focus on operating systems
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About

Today’s spotlight: 
Exploring best practices in embedded systems, 
with a focus on operating systems

Today’s take away:
Practical tips for building better software, 
applicable not only to embedded systems but 
also to software in general
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HELLO!

I am Gili Kamma

20 years in the industry

I love to improve things and solve 
problems

Team leader @ Priority-software



Agenda
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⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring
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⊡ Simulators
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Operating Systems
To Be or Not To Be
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Operating System

Hard Real Time

❖ Timing constraints are 
extremely strict

❖ A guaranteed response 
time

❖ Microseconds

❖ Flight control system
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Hard/Soft Real Time Requirements



Operating System

Hard Real Time

❖ Timing constraints are 
extremely strict

❖ A guaranteed response 
time

❖ Microseconds

❖ Flight control system

Soft Real Time

❖ Flexible Timing 
(5-10 milliseconds)

❖ ! A guaranteed 
response time

❖ Milliseconds

❖ Home automation

9

Hard/Soft Real Time Requirements



Operating System
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How to decide if we need 
an operating system or not?



Operating System
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What level of time precision does our system require?



Operating System
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What level of time precision does our system require?

⊡ 10 Microseconds?
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What level of time precision does our system require?

⊡ 10 Microseconds?

⊡ 10 Milliseconds?



Operating System

14

What level of time precision does our system require?

⊡ 10 Microseconds?

⊡ 10 Milliseconds?

⊡ 100 Milliseconds?



Operating System
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What level of time precision does our system require?

⊡ 10 Microseconds?

⊡ 10 Milliseconds?

⊡ 100 Milliseconds?

Less then 5 milliseconds – Don’t use 

an operating system*

*not impossible but challenging



Operating System
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How complicated our software is going to be?



Operating System
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The more interfaces and processes we have,

we would like to have an operating system

How complicated our software is going to be?



Operating System
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Soft Real Time Hard Real Time

Simple 
System

Complicated 
System
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Soft Real Time Hard Real Time

Simple 
System

None

Complicated 
System
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Soft Real Time Hard Real Time
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System

None

Complicated 
System

Operating system
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Soft Real Time Hard Real Time

Simple 
System

Don’t care None

Complicated 
System

Operating system



Operating System
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Soft Real Time Hard Real Time

Simple 
System

Don’t care None

Complicated 
System

Operating system ?



Operating System
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Soft Real Time Hard Real Time

Simple 
System

Don’t care None

Complicated 
System

Operating system
FPGA/Chip + CPU 

with operating 
system



Operating System
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Let’s review a system
and decide if an operating system

is needed



Operating System
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Operating System
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Communication Unit

Engine Dashboard
Cellular 

modem unit

CAN bus

UART- Logs

UART 

UART - Control



Operating System
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Communication Unit

Engine Dashboard
Cellular 

modem unit

CAN bus 

UART- Logs

UART 

UART - Control

1 2

43

4 interfaces       complicated



Operating System
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What level of time precision does
the system require?



Operating System

29

What level of time precision does
the system require?

~100 milliseconds



Operating System
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Communication Unit

Engine Dashboard
Cellular 

modem unit

CAN bus 

UART- Logs

UART 

UART - Control

1 2

43

operating system



Operating System
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Communication Unit

Engine

CAN bus 
1

operating system



“
Use an operating system for 

complex systems with soft real-
time requirements 
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Agenda
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⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring



Threads

Two threads tried to create large messages at the same 
time.

The second one always failed
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Threads

Change from asynchronous work 

to synchronous work

35

Prepare&

Send
Message 

A

Prepare&

Send
Message 

B

Prepare&

Send
Message 

A

Prepare&

Send
Message 

B



Threads
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Keep the number of threads to 
the bare minimum*

*The most difficult bugs in a system are related to 

multiple threads running simultaneously



Threads
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Good practice:

Thread to each communication 
interface

+ 

Periodic thread



Threads
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Communication Unit

Engine Dashboard
Cellular 

modem unit

CAN bus 

UART- Logs

UART 

UART - Control

1 2

43



Threads

39



Threads

40

Main Thread - periodic

T

Q

T T
T

T

T

T

T

Q

Q

Q

Q

Q
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Threads

42



Threads
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Threads
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Threads
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Threads
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Threads
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Threads
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Threads
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Main Thread - periodic

CAN bus RxPc Rx

T

Q

T T
T

T

T

T

T

Q

Q

Q

Q

Q

Cellular 
modem Rx



Threads
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Sync between threads 
(Input to queue)



Threads
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Cellular 
modem Rx

Main Thread - periodic

CAN bus Tx

CAN bus Rx

Log Tx

Pc Tx

Cellular modem Tx

Pc Rx

T

Q

T T
T

T

T

T

T

Q

Q

Q

Q

Q



Threads
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Sync between threads
(Queue to output)



“
Keep the number of threads 

to the bare minimum
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⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring



Layer Separation
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Embedded Software

Separate the logic layer 

from the hardware layer



Layer Separation
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Separate the logic layer 

from the hardware layer

Application Layer

Drivers handling Layer



Layer Separation
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Processes & 
Logics

Separate the logic layer 

from the hardware layer

Application Layer

Drivers handling Layer



Layer Separation
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Processes & 
Logics

Hardware 
Handling

Separate the logic layer 

from the hardware layer

Application Layer

Drivers handling Layer



Layer Separation
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Layer Separation
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How are we going to test it?



Layer Separation
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Probably, we’re not…



Layer Separation
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Logic

GetNextTrafficLight



Layer Separation
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Logic

SetTrafficLight



Layer Separation
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Logic

Hardware

SetTrafficLight



Layer Separation
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A unit test



Layer Separation

Unit tests encourage us to keep the code simpler

(Try to mock as little as possible)
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Layer Separation
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Okay, we’ve discussed the 
application layer. 

Now, let’s move on to the lower 
layer



Layer Separation

68



Layer Separation
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Layer Separation
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Layer Separation

71



Layer Separation

72

How Hardware tests should look like

Init

Write

Read

Compare



Layer Separation
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Layer Separation
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Prepare data



Layer Separation

75

Init



Layer Separation
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Write



Layer Separation
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Read



Layer Separation
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Compare



Layer Separation

Highly Effective:

⊡ Testing customer interfaces

⊡ Exemplary API usage
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Layer Separation

Highly Effective:

⊡ Testing customer interfaces

⊡ Exemplary API usage
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Layer Separation

Highly Effective:

⊡ Testing customer interfaces

⊡ Exemplary API usage
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Layer Separation

Motivation for layer separation:

⊡ Simplifies testing

⊡ Promotes cleaner code

⊡ Allows hardware/driver replacement without 
application changes
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Layer Separation

Motivation for layer separation:

⊡ Simplifies testing

⊡ Promotes cleaner code

⊡ Allows hardware/driver replacement without 
application changes
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“
Separate the logic layer 

from the hardware layer
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⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring



Network Problems
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Network Problems

Worked fine most of the time

Sometimes data was lost
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Network Problems

Data for transmission remains in RAM, awaiting further 
processing.
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Network Problems

Data for transmission remains in RAM, awaiting further 
processing.

91

So, what is the problem with that?



Network Problems

Data for transmission remains in RAM, awaiting further 
processing.

92

In case of unstable communication:

Start to aggregate - takes a lot of space.

Loss of data in case of reset.

.

Loss of data in case of reset



Network Problems
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Disconnect the Logic from the Network



Network Problems

Disconnect the Logic from the Network

94

Thread #1     Logic Thread #2     Sending



Network Problems

Disconnect the Logic from the Network

95

Always execute the same logic and store the results in 
nonvolatile memory (disk) - regardless of the current 

network status.

Thread #1     Logic Thread #2     Sending



Network Problems

96

Implementation Achievements:



Network Problems

97

⊡ Maximum data loss is now limited.

⊡ Not being sensitive any more to network errors.

Implementation Achievements:
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⊡ Maximum data loss is now limited.

⊡ Not being sensitive any more to network errors.

Implementation Achievements:



Network Problems
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⊡ Maximum data loss is now limited.

⊡ Not being sensitive any more to network errors.

Implementation Achievements:

After implementing this change, we no longer 
experienced any data loss.



Network Problems
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Second exampleDB time Sample time
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Second exampleDB time Sample time
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Second exampleDB time Sample time



Network Problems
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Second exampleDB time Sample time



Network Problems
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Second exampleDB time Sample time



Network Problems
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Second exampleDB time Sample time



Network Problems

106

⊡ Hard to put logic on the received side

⊡ Confusing, easy to miss without noticing

What is the problem with that
(Messages are not in order)?
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Network Problems
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⊡ Hard to put logic on the received side

⊡ Confusing, easy to miss without noticing

What is the problem with that
(Messages are not in order)?



How to avoid it?
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Network Problems

110

Use one queue to send data out 
from a specific interface 



“
Disconnect the logic

from the network

111



Agenda
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⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring



Message Structure

113

Messages Flow

Send status request 

Status message

Box A Box B



Message Structure
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Messages Flow

Send logs request

Send status request 

Box A Box B

Log messages

Status message



Threads

Depending on your low level

either a stream or packets
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Message Structure
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Stream

Depending on your low level

either a stream or packets



Message Structure
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Stream

Message 4Message 3Message 2Message 1

Depending on your low level

either a stream or packets



Message Structure

Potential problems with streaming
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Message 4Message 3Message 2Message 1



Message Structure
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Message 4Message 3Message 2Message 1

Message 4Message 3Message 2Mess

Potential problems with streaming



Message Structure
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Junk

Message 4Message 3Message 2Message 1

Message 4Message 3Message 2Mess

Message 4Message 3Message 2Message 1

Potential problems with streaming



Message Structure
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Junk

Message 4Message 3Message 2Message 1

Message 4Message 3Message 2Mess

Message 4Message 3Message 2Message 1

Potential problems with streaming

Message 4Message 3Message 2*Message 1



Message Structure
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Header CRCMessage Body

Recommended Message Structure (Streaming)



Message Structure
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CRCMessage BodyPrefix Len

Verify this content is correct



Message Structure
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Message Structure

125

Easy to identify in memory



Message Structure
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Message Structure
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Message Structure
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Message Structure
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Message Structure

130



Message Structure
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Message Structure
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Message Structure

⊡ Propriety protocol

⊡ Protobuf : ( https://protobuf.dev )

⊡ CBOR : ( https://cbor.io )

⊡ JSON

⊡ YAML

133

Body structure

https://protobuf.dev/
https://cbor.io/


Message Structure

134



“
Design your protocol

in a way you could always 

bounce back

from a “bad” message

135
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⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring



Simulators
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Simulators

138

The simulator allows us to replicate scenarios 
that would be difficult to test in real life



Simulators

Interfaces simulator
Load simulator

139

The simulator allows us to replicate scenarios 
that would be difficult to test in real life



Simulators
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Simulator #1



Simulators

141

Q:How to verify our CPU supports 
200 messages per second?



Simulators
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Opcode 9394: n

Opcode 9395: n

Opcode 9394: 1

Opcode 9395: 1

Simulator CPU
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146
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Simulators

⊡ The simulator sends X messages per second 
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped 
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test

148



Simulators

⊡ The simulator sends X messages per second 
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped 
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test

149



Simulators

⊡ The simulator sends X messages per second 
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped 
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test

150



Simulators

⊡ The simulator sends X messages per second 
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped 
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test
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Simulators

152

Simulator #2



Threads

153



Simulators

154

Q: How to simulate 5K+ endpoints?



Simulators

⊡ 1 data frame to 100 fake data frames 

⊡ The unit crashed on my table when I 
simulated 6k endpoints and put “aggressive 
configuration”
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Simulators

⊡ 1 data frame to 100 fake data frames 

⊡ The unit crashed on my table when I 
simulated 6k endpoints and put “aggressive 
configuration”
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Simulators
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Simulators
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Simulators
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Simulators
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Simulators
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Simulators
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Simulators
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Simulators
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Simulators
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Simulators
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Simulators

167



Simulators

168



Simulators

169



Simulators

What is special here:

⊡ No special hardware required.

⊡ Simple implementation.

⊡ Easy access to simulator mode without 
additional building.

⊡ Consistently crashed the system.
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Simulators

What is special here:

⊡ No special hardware required.

⊡ Simple implementation.

⊡ Easy access to simulator mode without 
additional building.

⊡ Consistently crashed the system.

174



“
Use simulators

175
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⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring



Logs

177



Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites 

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

178



Logs
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Logs
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08:51:06 08:51:07



Logs
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08:51:06 08:51:07



Logs

182

08:51:06 08:51:07

1 2



Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites 

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

183



Logs

184

Log level



Logs

185

File:Line



Logs

186

Thread id



Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites 

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring
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Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites 

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring
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Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites 

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

189



Logs

190



Logs

191

To which temperature?



Logs

192



Logs

193

To which version? from which version?



Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites 

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

194



Logs

195

2024-09-21 10:10:00.125 INFO ride.cpp:70 [Thread-7]: gpioC7 is 0

2024-09-21 10:10:00.125 INFO ride.cpp:93 [Thread-7]: gpioA3 is 1

2024-09-21 10:10:00.126 INFO ride.cpp:102 [Thread-7]: gpioA8 is 1



Logs

196

2024-09-21 10:10:00.125 INFO ride.cpp:70 [Thread-7]: gpioC7 is 0

2024-09-21 10:10:00.125 INFO ride.cpp:93 [Thread-7]: gpioA3 is 1

2024-09-21 10:10:00.126 INFO ride.cpp:102 [Thread-7]: gpioA8 is 1

2024-09-21 10:10:00.126 INFO ride.cpp:102 [Thread-7]: gpioC7 is 0, gpioA3 is 1 and gpioA8 is 1



“Milliseconds 

Metadata 

Same configuration 

Bare minimum 

With details 

Prepare for automation
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⊡ Layer Separation

⊡ Network Problems
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⊡ Logs

⊡ Monitoring



Monitoring
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Identify Errors Proactively: 
Don't Wait for Customer Complaints

1



Monitoring

200

If it's not automated, it won't get done

2

Identify Errors Proactively: 
Don't Wait for Customer Complaints

1



Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities 

⊡ Count interesting events and create summary for 
each unit

⊡ Compare between units

201



Monitoring

202



Monitoring
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Output

Python script



Monitoring
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Python script

Output



Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities 

⊡ Count interesting events and create summary for 
each unit

⊡ Compare between units

205



Monitoring

206

Timestamp Event

9/16/23 10:00 data send

9/16/23 11:00 data send

9/16/23 12:00 data send

9/16/23 13:00 data send

9/16/23 14:00 data send

9/16/23 15:00 data send

9/16/23 16:00 data send

9/16/23 17:00 data send

9/16/23 18:00 data send

9/16/23 19:00 data send

9/16/23 20:00 data send

9/16/23 21:00 data send

9/16/23 22:00 data send

9/16/23 23:00 data send

9/17/23 0:00 data send

9/17/23 1:00 data send

9/17/23 2:00 data send



Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities 

⊡ Count interesting events and create summary for 
each unit

⊡ Compare between units

207



Monitoring

208

Serial 
number

Firmware Errors Last time Data 
sending 
event

Max 
temperature 

(c)

346523 F2 0 3/4/2024 10:15:32 24 65



Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities 

⊡ Count interesting events and create summary for each unit

⊡ Compare between units

209



Monitoring

210

Serial 
number

Firmware Errors Last time Data 
sending 
event

Max 
temperature 

(c)

346523 F2 0 3/4/2024 10:15:32 24 65

345251 F1 0 3/4/2024 10:12:15 48 68

723642 F2 87 3/4/2024 10:16:52 12 75

548328 F2 0 3/4/2024 10:14:09 1 59
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Monitoring
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Serial 
number

Firmware Errors Last time Data 
sending 
event

Max 
temperature 

(c)

346523 F2 0 3/4/2024 10:15:32 24 65

345251 F1 0 3/4/2024 10:12:15 48 68

723642 F2 87 3/4/2024 10:16:52 12 75

548328 F2 0 3/4/2024 10:14:09 1 59



“
If it's not automated, it won't 

get done

213



Summary

⊡ Use an operating system for complex systems with soft real-
time requirements 
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⊡ Use an operating system for complex systems with soft real-
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⊡ Keep number of threads to the bare minimum
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Summary
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Summary

⊡ Use an operating system for complex systems with soft real-
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⊡ Separate logic layer from hardware layer

⊡ Disconnect the logic from the network

⊡ Design your protocol in a way you could always bounce back 
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⊡ Logs: put timestamp with milliseconds…
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Summary

⊡ Use an operating system for complex systems with soft real-
time requirements 

⊡ Keep number of threads to the bare minimum

⊡ Separate logic layer from hardware layer

⊡ Disconnect the logic from the network

⊡ Design your protocol in a way you could always bounce back 
from a “bad” message

⊡ Work with simulators

⊡ Logs: put timestamp with milliseconds…

⊡ Monitoring: if it's not automated, it won't get done
221
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Thank You!
Any questions?

You can find me at
@username
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