
1

Building Effective
Embedded Systems:

Architectural
Best Practices

(Hebrew)

gili.kamma@gmail.com – corecpp 2024

mailto:gili.kamma@gmail.com

About

Today’s spotlight:
Exploring best practices in embedded systems,
with a focus on operating systems

2

About

Today’s spotlight:
Exploring best practices in embedded systems,
with a focus on operating systems

Today’s take away:
Practical tips for building better software,
applicable not only to embedded systems but
also to software in general

3

44

HELLO!

I am Gili Kamma

20 years in the industry

I love to improve things and solve
problems

Team leader @ Priority-software

Agenda

5

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Agenda

6

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Operating Systems
To Be or Not To Be

7

Operating System

Hard Real Time

❖ Timing constraints are
extremely strict

❖ A guaranteed response
time

❖ Microseconds

❖ Flight control system

8

Hard/Soft Real Time Requirements

Operating System

Hard Real Time

❖ Timing constraints are
extremely strict

❖ A guaranteed response
time

❖ Microseconds

❖ Flight control system

Soft Real Time

❖ Flexible Timing
(5-10 milliseconds)

❖ ! A guaranteed
response time

❖ Milliseconds

❖ Home automation

9

Hard/Soft Real Time Requirements

Operating System

10

How to decide if we need
an operating system or not?

Operating System

11

What level of time precision does our system require?

Operating System

12

What level of time precision does our system require?

⊡ 10 Microseconds?

Operating System

13

What level of time precision does our system require?

⊡ 10 Microseconds?

⊡ 10 Milliseconds?

Operating System

14

What level of time precision does our system require?

⊡ 10 Microseconds?

⊡ 10 Milliseconds?

⊡ 100 Milliseconds?

Operating System

15

What level of time precision does our system require?

⊡ 10 Microseconds?

⊡ 10 Milliseconds?

⊡ 100 Milliseconds?

Less then 5 milliseconds – Don’t use

an operating system*

*not impossible but challenging

Operating System

16

How complicated our software is going to be?

Operating System

17

The more interfaces and processes we have,

we would like to have an operating system

How complicated our software is going to be?

Operating System

18

Soft Real Time Hard Real Time

Simple
System

Complicated
System

Operating System

19

Soft Real Time Hard Real Time

Simple
System

None

Complicated
System

Operating System

20

Soft Real Time Hard Real Time

Simple
System

None

Complicated
System

Operating system

Operating System

21

Soft Real Time Hard Real Time

Simple
System

Don’t care None

Complicated
System

Operating system

Operating System

22

Soft Real Time Hard Real Time

Simple
System

Don’t care None

Complicated
System

Operating system ?

Operating System

23

Soft Real Time Hard Real Time

Simple
System

Don’t care None

Complicated
System

Operating system
FPGA/Chip + CPU

with operating
system

Operating System

24

Let’s review a system
and decide if an operating system

is needed

Operating System

25

Operating System

26

Communication Unit

Engine Dashboard
Cellular

modem unit

CAN bus

UART- Logs

UART

UART - Control

Operating System

27

Communication Unit

Engine Dashboard
Cellular

modem unit

CAN bus

UART- Logs

UART

UART - Control

1 2

43

4 interfaces complicated

Operating System

28

What level of time precision does
the system require?

Operating System

29

What level of time precision does
the system require?

~100 milliseconds

Operating System

30

Communication Unit

Engine Dashboard
Cellular

modem unit

CAN bus

UART- Logs

UART

UART - Control

1 2

43

operating system

Operating System

31

Communication Unit

Engine

CAN bus
1

operating system

“
Use an operating system for

complex systems with soft real-
time requirements

32

Agenda

33

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Threads

Two threads tried to create large messages at the same
time.

The second one always failed

34

Threads

Change from asynchronous work

to synchronous work

35

Prepare&

Send
Message

A

Prepare&

Send
Message

B

Prepare&

Send
Message

A

Prepare&

Send
Message

B

Threads

36

Keep the number of threads to
the bare minimum*

*The most difficult bugs in a system are related to

multiple threads running simultaneously

Threads

37

Good practice:

Thread to each communication
interface

+

Periodic thread

Threads

38

Communication Unit

Engine Dashboard
Cellular

modem unit

CAN bus

UART- Logs

UART

UART - Control

1 2

43

Threads

39

Threads

40

Main Thread - periodic

T

Q

T T
T

T

T

T

T

Q

Q

Q

Q

Q

Threads

41

Threads

42

Threads

43

Threads

44

Threads

45

Threads

46

Threads

47

Threads

48

Threads

49

Main Thread - periodic

CAN bus RxPc Rx

T

Q

T T
T

T

T

T

T

Q

Q

Q

Q

Q

Cellular
modem Rx

Threads

50

Sync between threads
(Input to queue)

Threads

51

Cellular
modem Rx

Main Thread - periodic

CAN bus Tx

CAN bus Rx

Log Tx

Pc Tx

Cellular modem Tx

Pc Rx

T

Q

T T
T

T

T

T

T

Q

Q

Q

Q

Q

Threads

52

Sync between threads
(Queue to output)

“
Keep the number of threads

to the bare minimum

53

Agenda

54

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Layer Separation

55

Embedded Software

Separate the logic layer

from the hardware layer

Layer Separation

56

Separate the logic layer

from the hardware layer

Application Layer

Drivers handling Layer

Layer Separation

57

Processes &
Logics

Separate the logic layer

from the hardware layer

Application Layer

Drivers handling Layer

Layer Separation

58

Processes &
Logics

Hardware
Handling

Separate the logic layer

from the hardware layer

Application Layer

Drivers handling Layer

Layer Separation

59

Layer Separation

60

How are we going to test it?

Layer Separation

61

Probably, we’re not…

Layer Separation

62

Logic

GetNextTrafficLight

Layer Separation

63

Logic

SetTrafficLight

Layer Separation

64

Logic

Hardware

SetTrafficLight

Layer Separation

65

A unit test

Layer Separation

Unit tests encourage us to keep the code simpler

(Try to mock as little as possible)

66

Layer Separation

67

Okay, we’ve discussed the
application layer.

Now, let’s move on to the lower
layer

Layer Separation

68

Layer Separation

69

Layer Separation

70

Layer Separation

71

Layer Separation

72

How Hardware tests should look like

Init

Write

Read

Compare

Layer Separation

73

Layer Separation

74

Prepare data

Layer Separation

75

Init

Layer Separation

76

Write

Layer Separation

77

Read

Layer Separation

78

Compare

Layer Separation

Highly Effective:

⊡ Testing customer interfaces

⊡ Exemplary API usage

79

Layer Separation

Highly Effective:

⊡ Testing customer interfaces

⊡ Exemplary API usage

80

Layer Separation

Highly Effective:

⊡ Testing customer interfaces

⊡ Exemplary API usage

81

Layer Separation

Motivation for layer separation:

⊡ Simplifies testing

⊡ Promotes cleaner code

⊡ Allows hardware/driver replacement without
application changes

82

Layer Separation

Motivation for layer separation:

⊡ Simplifies testing

⊡ Promotes cleaner code

⊡ Allows hardware/driver replacement without
application changes

83

Layer Separation

Motivation for layer separation:

⊡ Simplifies testing

⊡ Promotes cleaner code

⊡ Allows hardware/driver replacement without
application changes

84

Layer Separation

Motivation for layer separation:

⊡ Simplifies testing

⊡ Promotes cleaner code

⊡ Allows hardware/driver replacement without
application changes

85

“
Separate the logic layer

from the hardware layer

86

Agenda

87

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Network Problems

88

Network Problems

Worked fine most of the time

Sometimes data was lost

89

Network Problems

Data for transmission remains in RAM, awaiting further
processing.

90

Network Problems

Data for transmission remains in RAM, awaiting further
processing.

91

So, what is the problem with that?

Network Problems

Data for transmission remains in RAM, awaiting further
processing.

92

In case of unstable communication:

Start to aggregate - takes a lot of space.

Loss of data in case of reset.

.

Loss of data in case of reset

Network Problems

93

Disconnect the Logic from the Network

Network Problems

Disconnect the Logic from the Network

94

Thread #1 Logic Thread #2 Sending

Network Problems

Disconnect the Logic from the Network

95

Always execute the same logic and store the results in
nonvolatile memory (disk) - regardless of the current

network status.

Thread #1 Logic Thread #2 Sending

Network Problems

96

Implementation Achievements:

Network Problems

97

⊡ Maximum data loss is now limited.

⊡ Not being sensitive any more to network errors.

Implementation Achievements:

Network Problems

98

⊡ Maximum data loss is now limited.

⊡ Not being sensitive any more to network errors.

Implementation Achievements:

Network Problems

99

⊡ Maximum data loss is now limited.

⊡ Not being sensitive any more to network errors.

Implementation Achievements:

After implementing this change, we no longer
experienced any data loss.

Network Problems

100

Second exampleDB time Sample time

Network Problems

101

Second exampleDB time Sample time

Network Problems

102

Second exampleDB time Sample time

Network Problems

103

Second exampleDB time Sample time

Network Problems

104

Second exampleDB time Sample time

Network Problems

105

Second exampleDB time Sample time

Network Problems

106

⊡ Hard to put logic on the received side

⊡ Confusing, easy to miss without noticing

What is the problem with that
(Messages are not in order)?

Network Problems

107

⊡ Hard to put logic on the received side

⊡ Confusing, easy to miss without noticing

What is the problem with that
(Messages are not in order)?

Network Problems

108

⊡ Hard to put logic on the received side

⊡ Confusing, easy to miss without noticing

What is the problem with that
(Messages are not in order)?

How to avoid it?

109

Network Problems

110

Use one queue to send data out
from a specific interface

“
Disconnect the logic

from the network

111

Agenda

112

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Message Structure

113

Messages Flow

Send status request

Status message

Box A Box B

Message Structure

114

Messages Flow

Send logs request

Send status request

Box A Box B

Log messages

Status message

Threads

Depending on your low level

either a stream or packets

115

Message Structure

116

Stream

Depending on your low level

either a stream or packets

Message Structure

117

Stream

Message 4Message 3Message 2Message 1

Depending on your low level

either a stream or packets

Message Structure

Potential problems with streaming

118

Message 4Message 3Message 2Message 1

Message Structure

119

Message 4Message 3Message 2Message 1

Message 4Message 3Message 2Mess

Potential problems with streaming

Message Structure

120

Junk

Message 4Message 3Message 2Message 1

Message 4Message 3Message 2Mess

Message 4Message 3Message 2Message 1

Potential problems with streaming

Message Structure

121

Junk

Message 4Message 3Message 2Message 1

Message 4Message 3Message 2Mess

Message 4Message 3Message 2Message 1

Potential problems with streaming

Message 4Message 3Message 2*Message 1

Message Structure

122

Header CRCMessage Body

Recommended Message Structure (Streaming)

Message Structure

123

CRCMessage BodyPrefix Len

Verify this content is correct

Message Structure

124

Message Structure

125

Easy to identify in memory

Message Structure

126

Message Structure

127

Message Structure

128

Message Structure

129

Message Structure

130

Message Structure

131

Message Structure

132

Message Structure

⊡ Propriety protocol

⊡ Protobuf : (https://protobuf.dev)

⊡ CBOR : (https://cbor.io)

⊡ JSON

⊡ YAML

133

Body structure

https://protobuf.dev/
https://cbor.io/

Message Structure

134

“
Design your protocol

in a way you could always

bounce back

from a “bad” message

135

Agenda

136

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Simulators

137

Simulators

138

The simulator allows us to replicate scenarios
that would be difficult to test in real life

Simulators

Interfaces simulator
Load simulator

139

The simulator allows us to replicate scenarios
that would be difficult to test in real life

Simulators

140

Simulator #1

Simulators

141

Q:How to verify our CPU supports
200 messages per second?

Simulators

142

Opcode 9394: n

Opcode 9395: n

Opcode 9394: 1

Opcode 9395: 1

Simulator CPU

143

144

145

146

147

Simulators

⊡ The simulator sends X messages per second
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test

148

Simulators

⊡ The simulator sends X messages per second
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test

149

Simulators

⊡ The simulator sends X messages per second
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test

150

Simulators

⊡ The simulator sends X messages per second
and verifies that it receives all of them back

⊡ At 850 messages per second, it stopped
working

⊡ The PC didn’t have enough resources

⊡ The embedded CPU passed the test

151

Simulators

152

Simulator #2

Threads

153

Simulators

154

Q: How to simulate 5K+ endpoints?

Simulators

⊡ 1 data frame to 100 fake data frames

⊡ The unit crashed on my table when I
simulated 6k endpoints and put “aggressive
configuration”

155

Simulators

⊡ 1 data frame to 100 fake data frames

⊡ The unit crashed on my table when I
simulated 6k endpoints and put “aggressive
configuration”

156

Simulators

157

Simulators

158

Simulators

159

Simulators

160

Simulators

161

Simulators

162

Simulators

163

Simulators

164

Simulators

165

Simulators

166

Simulators

167

Simulators

168

Simulators

169

Simulators

What is special here:

⊡ No special hardware required.

⊡ Simple implementation.

⊡ Easy access to simulator mode without
additional building.

⊡ Consistently crashed the system.

170

Simulators

What is special here:

⊡ No special hardware required.

⊡ Simple implementation.

⊡ Easy access to simulator mode without
additional building.

⊡ Consistently crashed the system.

171

Simulators

What is special here:

⊡ No special hardware required.

⊡ Simple implementation.

⊡ Easy access to simulator mode without
additional building.

⊡ Consistently crashed the system.

172

Simulators

What is special here:

⊡ No special hardware required.

⊡ Simple implementation.

⊡ Easy access to simulator mode without
additional building.

⊡ Consistently crashed the system.

173

Simulators

What is special here:

⊡ No special hardware required.

⊡ Simple implementation.

⊡ Easy access to simulator mode without
additional building.

⊡ Consistently crashed the system.

174

“
Use simulators

175

Agenda

176

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Logs

177

Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

178

Logs

179

Logs

180

08:51:06 08:51:07

Logs

181

08:51:06 08:51:07

Logs

182

08:51:06 08:51:07

1 2

Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

183

Logs

184

Log level

Logs

185

File:Line

Logs

186

Thread id

Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

187

Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

188

Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

189

Logs

190

Logs

191

To which temperature?

Logs

192

Logs

193

To which version? from which version?

Logs

⊡ Add timestamps with milliseconds

⊡ Add metadata (log level, file, line and thread)

⊡ Use the same logs configuration in all sites

⊡ Keep number of logs to the bare minimum

⊡ Write logs with details

⊡ Prepare your logs to automatic monitoring

194

Logs

195

2024-09-21 10:10:00.125 INFO ride.cpp:70 [Thread-7]: gpioC7 is 0

2024-09-21 10:10:00.125 INFO ride.cpp:93 [Thread-7]: gpioA3 is 1

2024-09-21 10:10:00.126 INFO ride.cpp:102 [Thread-7]: gpioA8 is 1

Logs

196

2024-09-21 10:10:00.125 INFO ride.cpp:70 [Thread-7]: gpioC7 is 0

2024-09-21 10:10:00.125 INFO ride.cpp:93 [Thread-7]: gpioA3 is 1

2024-09-21 10:10:00.126 INFO ride.cpp:102 [Thread-7]: gpioA8 is 1

2024-09-21 10:10:00.126 INFO ride.cpp:102 [Thread-7]: gpioC7 is 0, gpioA3 is 1 and gpioA8 is 1

“Milliseconds

Metadata

Same configuration

Bare minimum

With details

Prepare for automation

197

Agenda

198

⊡ Operating Systems

⊡ Threads

⊡ Layer Separation

⊡ Network Problems

⊡ Message Structure

⊡ Simulators

⊡ Logs

⊡ Monitoring

Monitoring

199

Identify Errors Proactively:
Don't Wait for Customer Complaints

1

Monitoring

200

If it's not automated, it won't get done

2

Identify Errors Proactively:
Don't Wait for Customer Complaints

1

Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities

⊡ Count interesting events and create summary for
each unit

⊡ Compare between units

201

Monitoring

202

Monitoring

203

Output

Python script

Monitoring

204

Python script

Output

Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities

⊡ Count interesting events and create summary for
each unit

⊡ Compare between units

205

Monitoring

206

Timestamp Event

9/16/23 10:00 data send

9/16/23 11:00 data send

9/16/23 12:00 data send

9/16/23 13:00 data send

9/16/23 14:00 data send

9/16/23 15:00 data send

9/16/23 16:00 data send

9/16/23 17:00 data send

9/16/23 18:00 data send

9/16/23 19:00 data send

9/16/23 20:00 data send

9/16/23 21:00 data send

9/16/23 22:00 data send

9/16/23 23:00 data send

9/17/23 0:00 data send

9/17/23 1:00 data send

9/17/23 2:00 data send

Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities

⊡ Count interesting events and create summary for
each unit

⊡ Compare between units

207

Monitoring

208

Serial
number

Firmware Errors Last time Data
sending
event

Max
temperature

(c)

346523 F2 0 3/4/2024 10:15:32 24 65

Monitoring

⊡ Write a Python script - start with the errors

⊡ Monitor periodic activities

⊡ Count interesting events and create summary for each unit

⊡ Compare between units

209

Monitoring

210

Serial
number

Firmware Errors Last time Data
sending
event

Max
temperature

(c)

346523 F2 0 3/4/2024 10:15:32 24 65

345251 F1 0 3/4/2024 10:12:15 48 68

723642 F2 87 3/4/2024 10:16:52 12 75

548328 F2 0 3/4/2024 10:14:09 1 59

Monitoring

211

Serial
number

Firmware Errors Last time Data
sending
event

Max
temperature

(c)

346523 F2 0 3/4/2024 10:15:32 24 65

345251 F1 0 3/4/2024 10:12:15 48 68

723642 F2 87 3/4/2024 10:16:52 12 75

548328 F2 0 3/4/2024 10:14:09 1 59

Monitoring

212

Serial
number

Firmware Errors Last time Data
sending
event

Max
temperature

(c)

346523 F2 0 3/4/2024 10:15:32 24 65

345251 F1 0 3/4/2024 10:12:15 48 68

723642 F2 87 3/4/2024 10:16:52 12 75

548328 F2 0 3/4/2024 10:14:09 1 59

“
If it's not automated, it won't

get done

213

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

214

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

⊡ Keep number of threads to the bare minimum

215

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

⊡ Keep number of threads to the bare minimum

⊡ Separate logic layer from hardware layer

216

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

⊡ Keep number of threads to the bare minimum

⊡ Separate logic layer from hardware layer

⊡ Disconnect the logic from the network

217

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

⊡ Keep number of threads to the bare minimum

⊡ Separate logic layer from hardware layer

⊡ Disconnect the logic from the network

⊡ Design your protocol in a way you could always bounce back
from a “bad” message

218

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

⊡ Keep number of threads to the bare minimum

⊡ Separate logic layer from hardware layer

⊡ Disconnect the logic from the network

⊡ Design your protocol in a way you could always bounce back
from a “bad” message

⊡ Work with simulators

219

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

⊡ Keep number of threads to the bare minimum

⊡ Separate logic layer from hardware layer

⊡ Disconnect the logic from the network

⊡ Design your protocol in a way you could always bounce back
from a “bad” message

⊡ Work with simulators

⊡ Logs: put timestamp with milliseconds…

220

Summary

⊡ Use an operating system for complex systems with soft real-
time requirements

⊡ Keep number of threads to the bare minimum

⊡ Separate logic layer from hardware layer

⊡ Disconnect the logic from the network

⊡ Design your protocol in a way you could always bounce back
from a “bad” message

⊡ Work with simulators

⊡ Logs: put timestamp with milliseconds…

⊡ Monitoring: if it's not automated, it won't get done
221

222

Thank You!
Any questions?

You can find me at
@username

	Slide 1
	Slide 2: About
	Slide 3: About
	Slide 4
	Slide 5: Agenda
	Slide 6: Agenda
	Slide 7: Operating Systems To Be or Not To Be
	Slide 8: Operating System
	Slide 9: Operating System
	Slide 10: Operating System
	Slide 11: Operating System
	Slide 12: Operating System
	Slide 13: Operating System
	Slide 14: Operating System
	Slide 15: Operating System
	Slide 16: Operating System
	Slide 17: Operating System
	Slide 18: Operating System
	Slide 19: Operating System
	Slide 20: Operating System
	Slide 21: Operating System
	Slide 22: Operating System
	Slide 23: Operating System
	Slide 24: Operating System
	Slide 25: Operating System
	Slide 26: Operating System
	Slide 27: Operating System
	Slide 28: Operating System
	Slide 29: Operating System
	Slide 30: Operating System
	Slide 31: Operating System
	Slide 32
	Slide 33: Agenda
	Slide 34: Threads
	Slide 35: Threads
	Slide 36: Threads
	Slide 37: Threads
	Slide 38: Threads
	Slide 39: Threads
	Slide 40: Threads
	Slide 41: Threads
	Slide 42: Threads
	Slide 43: Threads
	Slide 44: Threads
	Slide 45: Threads
	Slide 46: Threads
	Slide 47: Threads
	Slide 48: Threads
	Slide 49: Threads
	Slide 50: Threads
	Slide 51: Threads
	Slide 52: Threads
	Slide 53
	Slide 54: Agenda
	Slide 55: Layer Separation
	Slide 56: Layer Separation
	Slide 57: Layer Separation
	Slide 58: Layer Separation
	Slide 59: Layer Separation
	Slide 60: Layer Separation
	Slide 61: Layer Separation
	Slide 62: Layer Separation
	Slide 63: Layer Separation
	Slide 64: Layer Separation
	Slide 65: Layer Separation
	Slide 66: Layer Separation
	Slide 67: Layer Separation
	Slide 68: Layer Separation
	Slide 69: Layer Separation
	Slide 70: Layer Separation
	Slide 71: Layer Separation
	Slide 72: Layer Separation
	Slide 73: Layer Separation
	Slide 74: Layer Separation
	Slide 75: Layer Separation
	Slide 76: Layer Separation
	Slide 77: Layer Separation
	Slide 78: Layer Separation
	Slide 79: Layer Separation
	Slide 80: Layer Separation
	Slide 81: Layer Separation
	Slide 82: Layer Separation
	Slide 83: Layer Separation
	Slide 84: Layer Separation
	Slide 85: Layer Separation
	Slide 86
	Slide 87: Agenda
	Slide 88: Network Problems
	Slide 89: Network Problems
	Slide 90: Network Problems
	Slide 91: Network Problems
	Slide 92: Network Problems
	Slide 93: Network Problems
	Slide 94: Network Problems
	Slide 95: Network Problems
	Slide 96: Network Problems
	Slide 97: Network Problems
	Slide 98: Network Problems
	Slide 99: Network Problems
	Slide 100: Network Problems
	Slide 101: Network Problems
	Slide 102: Network Problems
	Slide 103: Network Problems
	Slide 104: Network Problems
	Slide 105: Network Problems
	Slide 106: Network Problems
	Slide 107: Network Problems
	Slide 108: Network Problems
	Slide 109: How to avoid it?
	Slide 110: Network Problems
	Slide 111
	Slide 112: Agenda
	Slide 113: Message Structure
	Slide 114: Message Structure
	Slide 115: Threads
	Slide 116: Message Structure
	Slide 117: Message Structure
	Slide 118: Message Structure
	Slide 119: Message Structure
	Slide 120: Message Structure
	Slide 121: Message Structure
	Slide 122: Message Structure
	Slide 123: Message Structure
	Slide 124: Message Structure
	Slide 125: Message Structure
	Slide 126: Message Structure
	Slide 127: Message Structure
	Slide 128: Message Structure
	Slide 129: Message Structure
	Slide 130: Message Structure
	Slide 131: Message Structure
	Slide 132: Message Structure
	Slide 133: Message Structure
	Slide 134: Message Structure
	Slide 135
	Slide 136: Agenda
	Slide 137: Simulators
	Slide 138: Simulators
	Slide 139: Simulators
	Slide 140: Simulators
	Slide 141: Simulators
	Slide 142: Simulators
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148: Simulators
	Slide 149: Simulators
	Slide 150: Simulators
	Slide 151: Simulators
	Slide 152: Simulators
	Slide 153: Threads
	Slide 154: Simulators
	Slide 155: Simulators
	Slide 156: Simulators
	Slide 157: Simulators
	Slide 158: Simulators
	Slide 159: Simulators
	Slide 160: Simulators
	Slide 161: Simulators
	Slide 162: Simulators
	Slide 163: Simulators
	Slide 164: Simulators
	Slide 165: Simulators
	Slide 166: Simulators
	Slide 167: Simulators
	Slide 168: Simulators
	Slide 169: Simulators
	Slide 170: Simulators
	Slide 171: Simulators
	Slide 172: Simulators
	Slide 173: Simulators
	Slide 174: Simulators
	Slide 175
	Slide 176: Agenda
	Slide 177: Logs
	Slide 178: Logs
	Slide 179: Logs
	Slide 180: Logs
	Slide 181: Logs
	Slide 182: Logs
	Slide 183: Logs
	Slide 184: Logs
	Slide 185: Logs
	Slide 186: Logs
	Slide 187: Logs
	Slide 188: Logs
	Slide 189: Logs
	Slide 190: Logs
	Slide 191: Logs
	Slide 192: Logs
	Slide 193: Logs
	Slide 194: Logs
	Slide 195: Logs
	Slide 196: Logs
	Slide 197
	Slide 198: Agenda
	Slide 199: Monitoring
	Slide 200: Monitoring
	Slide 201: Monitoring
	Slide 202: Monitoring
	Slide 203: Monitoring
	Slide 204: Monitoring
	Slide 205: Monitoring
	Slide 206: Monitoring
	Slide 207: Monitoring
	Slide 208: Monitoring
	Slide 209: Monitoring
	Slide 210: Monitoring
	Slide 211: Monitoring
	Slide 212: Monitoring
	Slide 213
	Slide 214: Summary
	Slide 215: Summary
	Slide 216: Summary
	Slide 217: Summary
	Slide 218: Summary
	Slide 219: Summary
	Slide 220: Summary
	Slide 221: Summary
	Slide 222: Thank You!

