
Core C++ 2024

Parallel
Programming

Models
Eran Gilad,

Parallel Programming Models in C++

Nice to meet you!

Day job:

Database internals @

2

Community activity:

Conference @

Meetups @

Chit-chat @

 bit.ly/cpp-wa-desc

Parallel Programming Models in C++

Why parallel programming?

Why is it hard?
non-deterministic execution, data races, deadlocks

Having structure makes things easier

1. Performance 2. Hide I/O 3. Responsiveness

3

Parallel Programming Models in C++

Programming model

User can reason about correctness
Library can provide useful features

Runtime can optimize scheduling

Model → structure → abstractions

Crucial in parallel programming!

4

Parallel Programming Models in C++

C++ parallel programming facilities

atomic asyncfuture
promise execution::par

execution::seq

thread_local

reducecounting_semaphore

condition_variable

latch

packaged_task

lock_guard

exclusive_scan

co_yield
co_return co_await

thread

5

mutex

Parallel Programming Models in C++

C++ parallel programming facilities

atomic

mutex

asyncfuture
promise execution::par

execution::seq

thread_local

reducecounting_semaphore

condition_variable

latch

packaged_task

lock_guard

exclusive_scan

co_yield
co_return co_await

Not random facilities, not a single API:
4 parallel programming models

6

thread

Parallel Programming Models in C++

C++ parallel programming models

Task parallelism
async, promises, futures

(C++11)

Unstructured
thread, mutex, atomics

(C++11)

Data parallelism
parallel algorithms

(C++17)

Not different abstraction levels - different program structuring

Cooperative tasks
coroutines
(C++20)

7

Parallel Programming Models in C++

Talk outline

This talk is about the forest,
not about the trees

Intro

Task-based parallelism

Mixing models

Cooperative multitasking

Data parallelism

Unstructured parallelism

Parallel Programming Models in C++

Model #1: Unstructured parallelism

●Ad hoc use of parallelization facilities
○ Solve a particular need

●Relies on lower-level abstractions
●Min overhead, max hardware utilization
●Min safety, so requires max proficiency
●Central C++11 feature

9

Parallel Programming Models in C++

Major components (partial list)

Memory model
atomic and friends, thread_local

Threading and sync classes
thread, mutex, condition_variable, semaphore, latch, barrier

Convenience utils
RAII lock wrappers, call_once, jthread

C++11/14

C++20

10

Parallel Programming Models in C++

Exclusive use cases

●Construct higher level facilities
○ E.g., thread pool, spin lock etc.

●Concurrent data structures
○ At least thread safe, usually better if lock free

●Long running services

11

Parallel Programming Models in C++

Missing part - safe shared state

●Threads communicate via shared state
○ atomics are too fine-grained

○ locking complete containers is too coarse grained

●We need concurrent data structures!
○ Nothing yet

○ RCU and hazard pointers hopefully in C++26

12

Parallel Programming Models in C++

Unstructured parallelism pros and cons

● Maximal control

● Usually maximal performance (when done right)

● Complicated memory model, hard to make ideal use

● Data races, deadlocks, non-determinism

13

Parallel Programming Models in C++

Thread-level API shortcomings

Higher abstraction level + clever runtime
⇓

Less work, less bugs, probably better performance

Thread ≈

Get execution entry point,
no functional semantics

Synchronization, communication,
scheduling interleaved in code

14

Parallel Programming Models in C++

Model #2: Task-based parallelism

● Task: limited computation providing single result
○ Function, lambda, loop iteration etc.
○ Ideally has inputs and/or output, no side effects

● Decouples functionality from execution
○ One thread can run many tasks
○ One task can migrate among many threads (?)

15

Parallel Programming Models in C++

Tasks are asynchronous

Execution:
● Somewhere, sometime
● Creator proceeds till outcome needed
Communication channel:
● Future: A handle to the task outcome
● Promise: the task’s end of the future

Creator Task

PromiseFuture

16

Parallel Programming Models in C++

C++ tasks

● Spawn tasks using std::async
● Obtain results using std::future
● The runtime assigns tasks to worker threads

○ Yes, the C++ runtime can create and manage threads without user
intervention!

future<int> answer = async(..., []{ return 42; });
pretend_to_work();
cout << “found the answer: “ << answer.get() << endl;

17

Parallel Programming Models in C++

future and promise

● future<T>
○ Returned by a call to async
○ Provides access to the task’s result
○ The “pull” end of a communication channel

● promise<T>
○ The “push” end of the communication channel
○ Encapsulated by async

promisefuture

18

Parallel Programming Models in C++

async execution

Task execution determined by when:
1. launch::async - on a new thread (“as if”!)
2. launch::deferred - right before the results are needed
3. async | deferred - implementation dependent (default)

future<int> answer = async(when, []{ return 42; });
pretend_to_work();
cout << “found the answer: “ << answer.get() << endl;

19

Parallel Programming Models in C++

std::async tasks limitations

● No composition - e.g., then()
● No execution config - e.g., thread pool
● No scheduling options - e.g., yield
● No changes since C++11 -🤷

20

Parallel Programming Models in C++

Model #3: Cooperative Multitasking

● Blocked tasks should not block the CPU
○ Assuming #tasks >> #cores

● Tasks are a user-mode concept
○ The kernel can't help

● Async flows based on callbacks are cumbersome
○ Not the programming model we want

21

 Enter coroutines!

Parallel Programming Models in C++

Coroutines

C++20 coroutine: a function that can be explicitly suspended
and resumed by the C++ code
● No operating system involvement
● No assembly
● Full language (and compiler) support
● Well defined state management and error handling

22

Parallel Programming Models in C++

Example

coro_t coro_foo() {

 cout << "Before await\n";
 co_await suspend_always{};
 cout << "After await\n";

}

int main() {

 coro_t c = coro_foo();
 cout << "c suspended\n";
 c.resume();

}

coro_t: define coroutine behavior and resume handle

23

Parallel Programming Models in C++

co_await expr

● expr should evaluate to an awaitable object
● The awaitable is a scheduling point:

○ await_ready - should the coroutine be suspended
○ await_suspend - get the suspended coroutine handle
○ await_resume - after coroutine resumed

● co_await foo():
○ execute foo, evaluate its return value (awaitable)
○ suspend the current coroutine if needed

24

Parallel Programming Models in C++

Coroutine scheduling

● co_await returns control to caller or another coroutine
○ It does not create any parallelism!

● The program must:
○ Track suspended coroutines
○ Resume ready coroutines

● Requirements:
○ Some source of parallelism (async I/O, worker threads, etc.)
○ Scheduler

25

Parallel Programming Models in C++

Coroutine-based multitasking example

1. The scheduler starts a coroutine task
2. The task invokes async I/O
3. The task suspends itself
4. The scheduler switches to another task
5. The async I/O completes
6. The awaiting task marked as ready
7. The scheduler resumes it when possible

Scheduler Async I/O

26

Parallel Programming Models in C++

Concurrency and parallelism

BUG-1001
 In progress

BUG-1002
 In progress

BUG-1001
 In progress

BUG-1002
 In progress

BUG-1001
Need repro

BUG-1002
In progress

😞 😊 😇😊

Task concurrency,
multi-CPU parallelism

Task concurrency,
CPU/IO parallelism

27

Task concurrency,
no parallelism

Parallel Programming Models in C++

Parallel coroutines execution

● Commonly one thread per core
● Suspended tasks can move among cores

○ Can you use thread_local in this scenario?
● Sync primitives must be coroutine-aware

○ co_await coro_lock() instead of std::mutex.lock()
○ A coroutine can't switch if its thread is blocked!

● Expected scheduler complexity - races, load balancing, task
affinity, etc.

28

Parallel Programming Models in C++

Threads vs. tasks

29

Threads use cases Tasks use cases
Parallelism abstraction (CPU) Concurrency abstraction (function)
Background services/workers Many short and independent ops
Long complex parallel operations “local”/ad-hoc (async I/O)
Equal amount of per-thread work Dynamic load balancing

Parallel Programming Models in C++

Fibers / user threads / green threads

● Stackful coroutines
○ A full stack must be allocated for each fiber

● Any function running on a fiber can be suspended
○ Not just the coroutine body

● Decoupled executor (fiber) and work (function)
○ Allows fiber pools etc.

● Requires an "ecosystem" - scheduler and sync objects
● Not supported in C++ (yet?)

30

Parallel Programming Models in C++

Model #4: Data parallelism

A programming model in which parallelism stems from
the individual computation associated with every
element in a collection.
● Requires a lot of non-dependent data
● Procedure:

○ Divide element processing among processors
○ Short and simple operation on each element

31

Parallel Programming Models in C++

C++ Parallel algorithms

● High level abstraction
○ Few customization points for user
○ No control over parallelism, scheduling, work distribution etc.
○ Library + runtime can be very efficient
○ When used properly: no data races, deadlocks etc.

32

res = algorithm(

 exec_policy,

 container);

Accelerate data processing

Sequential execution context

Declarative API

Parallel Programming Models in C++

Using parallel algorithms

● Most standard algorithms have a parallel overload
○ First parameter: ExecutionPolicy
○ ForwardIterator instead of InputIterator / OutputIterator

● Complexity requirements more lax
● Implementation isn’t specified – in theory, can use GPUs

33

vector<int> v = {1, 2, 3, 5, 11, 20};
int res = reduce(execution::par, v.begin(), v.end());
assert(res == 42);

Parallel Programming Models in C++

sequenced_policy

● Forces execution to take place on the calling thread
● Differs from no-policy call:

1. exceptions invoke std::terminate()
2. ForwardIterator

● execution::seq is an instance of sequence_policy
○ Algorithms can be overloaded by policy
○ Policy is a compile time decision!

34

reduce(execution::seq, ..., ...);

Parallel Programming Models in C++

parallel_policy

● Execution on caller or another thread (runtime pool)
● Per thread, semantics are similar to sequenced_policy -

unspecified order, no interleaving
● Data races are now possible if multiple operations write to

unprotected data

35

reduce(execution::par, ..., ...);

Parallel Programming Models in C++

parallel_unsequenced_policy

● Operations can now be interleaved and moved from thread to
thread during execution
○ Operations must not use any locks
○ Cannot assume a thread executes a single operation at a time

● More user restrictions => more library options
○ Vectorization can now be used
○ finer grained scheduling

36

reduce(execution::par_unseq, ..., ...);

Parallel Programming Models in C++

unsequenced_policy

● Operations can be interleaved on a single thread
○ Not a multithreaded context
○ But vectorization can still be used!

● C++20 addition

37

reduce(execution::unseq, ..., ...);

Parallel Programming Models in C++

Non-standard policies

● Vendor-specific
● Can allow the use of accelerators

○ GPU
○ FPGA
○ ASIC

38

Parallel Programming Models in C++

● C++ separates algorithms from containers
○ Thread-safe containers by default? No - zero-overhead!

● Parallel algorithms can modify data but not structure
○ Unlike sequential algorithms, which can modify both

● Accessing a container processed by a parallel algorithm from
another thread? Possible race!

Parallel algorithms != parallel containers

39

Parallel Programming Models in C++

Mixing models - unstructured context

40

Most cores are used:
● E.g., server
● Use coroutines for async I/O
● No resources for parallel

algorithms or async compute

Most cores are unused:
● E.g., background service
● Tasks and parallel algorithms

can be used
○ Impact? depends

● Careful with shared state!

Reminder: runtime schedulers aren’t aware of user threads

Parallel Programming Models in C++

Mixing models - std::async tasks context

41

Most cores are used:
● Namely, many async tasks

created
● No point in creating threads or

using parallel algorithms
● Awkward context for coroutine

execution

Most cores are unused:
● E.g., ad-hoc work, UI worker
● Can use parallel algorithms

from tasks
● Creating threads less suitable -

spawn tasks instead
● Using sync mechanism (mutex

etc.) doesn’t fit the model

Parallel Programming Models in C++

Mixing models - coroutine tasks context

42

Most cores are used:
● Namely, the scheduler uses many

cores
● No point in using other models

from within coroutines

Most cores are unused:
● E.g., limited I/O needs
● Parallel algorithms from

coroutine will block it
● std::async tasks somewhat

match (~allow awaiting)
● Tasks too short for thread

creation

Parallel Programming Models in C++

Mixing models - parallel algorithms

● Within a parallel algorithm (e.g., user lambda):
○ No point in spawning async tasks or creating threads
○ Inappropriate context for coroutines
○ Using sync mechanisms to access external state possible but might

kill concurrency

43

Parallel Programming Models in C++

Summary

Task parallelism
functional decomposition,

incomplete feature

Unstructured
Low-level building blocks

Data parallelism
declarative, no executors

control (yet!)

Mixing models hardly works. Parallel programming is hard.

Cooperative multitasking
great for async I/O,
missing scheduler

44

Thank you! Qs?

