
Core C++ 2024

Speeding Up Intel Gaudi
Deep-Learning Accelerators

Using an MLIR-Based Compiler

Dafna Mordechai, Omer Paparo Bivas

Accelerate with Xeon

Speeding up
deep-

learning accelerators
using an MLIR-based
compiler

Agenda

- Deep Learning Compilers: Transforming a Large Computational Graph

into an optimized Execution Plan

- The TPC Fuser: A JIT compiler for deep learning kernels that delivers

significant performance improvements

- Case Study: Adjusting the TPC-Fuser to LLMs Recent Challenges

Intel Gaudi 3 AI accelerator
Spec and Block Diagram

Feature/Product Intel® Gaudi® 3 Accelerator

BF16 Matrix TFLOPs 1835

FP8 Matrix TFLOPs 1835

BF16 Vector TFLOPs 28.7

MME Units 8

TPC Units 64

HBM Capacity 128 GB

HBM Bandwidth 3.67 TB/s

On-die SRAM Capacity 96 MB

On-die SRAM Bandwidth

RD+WR (L2 Cache)
19.2 TB/s

Networking 1200 GB/s bidirectional

Host Interface PCIe Gen5 x16

Host Interface Peak BW 128 GB/s bidirectional

Media Engine
Rotator + 14 Decoders

(HEVC, H.264, JPEG, VP9)

MME

x
8

P
C

Ie
 G

e
n

5
M

e
d

ia
 E

n
g

in
e

MME

MME MME

MME MME

MME MME

48MB SRAM

16 TPCs16 TPCs

16 TPCs16 TPCs

48MB SRAM

12
x

 2
0

0
 G

b
E

HBM PHY HBM PHY

HBM PHY HBM PHY

HBM PHYHBM PHY

HBM PHYHBM PHY

12
x

 2
0

0
 G

b
E

M
e

d
ia

 E
n

g
in

e

x
8

 P
C

Ie
 G

e
n

5

MME - Matrix Multiplication Engine

Configurable, not programmable

Each MME is a large output stationary

systolic array

▪256x256 MAC structure w/ FP32

accumulators

▪64k MACs/cycle for BF16 and FP8

Large systolic array reduces intra-chip

data movement, increasing efficiency

Internal pipeline to maximize compute

throughput

256 x 256
MME

256 input elements

256 input
elements

Vector: 256B SIMD Scalar

Register File / Vector local memory (VLM)

Store Load

HBM/L3$/L2$

AGU AGU

Fully Programmable using the TPC-C

C enhanced with TPC intrinsics

VLIW with 4 separate pipeline slots:

Vector, Scalar, Load & Store

Integrated Address Generation Unit for HW-

accelerated address generation

Supports main 1/2/4-Byte datatypes: Floating

Point and Integer

Tensor Processor Core (TPC):
256B-wide SIMD Vector Processor

Layered View of Intel® Gaudi® Software
Suite

DeepSpeed
Integration

LLM serving
Integration

Quantization
Integration

Quantization Toolkit

PyTorch Integration

Graph Compiler

Collective
Communication

Library (CCL)
TPC Fuser

Custom
User

TPC Kernels

Optimized
TPC Kernel

Library

User-Mode Driver/Run-Time Environment

Compute Driver Network Driver

Proprietary Ecosystem Integration Plugin

Intel Gaudi Software Suite

Compilers 101

Compiler(Source Code) --> Machine Code

Compiler == ()
[semantic preserving]

Translations + Transformations

LLVM - Low Level Virtual Machine
Clang - F

Deep Learning Compilation 101

The original Resnet-18 architecture. Up to 152 layers were

trained in the original publication (as "ResNet-152")

- Wikipedia

tanh_f32

Graph Compilation Flow: Transforming a Deep Learning
Computational Graph into an Intel-Gaudi Execution Plan

The original Resnet-18 architecture. Up to 152 layers were

trained in the original publication (as "ResNet-152")

- Wikipedia

Neural Network Hardware Mapping – Use of MME and TPC

Layered View of Intel® Gaudi® Software Suite

DeepSpeed
Integration

LLM serving
Integration

Quantization
Integration

Quantization Toolkit

PyTorch Integration

Graph Compiler

Collective
Communication

Library (CCL)
TPC Fuser

Custom
User

TPC Kernels

Optimized
TPC Kernel

Library

User-Mode Driver/Run-Time Environment

Compute Driver Network Driver

Proprietary Ecosystem Integration Plugin

TPC Kernel Library Providers

Pre-Compiled Library (TPC-C)

Intel-Gaudi optimized TPC kernel library

Custom user kernels

JIT Library

Auto-generated fused kernels, compiled during

graph compilation, using the MLIR-based JIT

compiler

All the kernels are compiled using the
Clang-based TPC Compiler

Graph Compilation Flow

The original Resnet-18 architecture. Up to 152 layers were

trained in the original publication (as "ResNet-152")

- Wikipedia

- Processes the deep learning topology to allocate operations

across MME, TPC, and DMA engines

▪ Generate MME Configurations

▪ Select kernels from the different kernel library providers

- Optimizes

- Schedules operations while accounting for memory constraints and dependencies

- Configures hardware registers and system settings based on the execution plane (recipe)

What's an Ideal Execution?

MMEs

Graph Compiler: Slicing + Bundling

The Graph Compiler is designed to partition data and group operations efficiently to achieve

overlapping execution between the MME and TPC units.

This optimization maximizes the use of SRAM and local caches, enhancing data transfer efficiency.

- Spare HBM bandwidth

- Enhances caches and local memory efficiency

- Spare kernel-to-kernel invocation latency

- Applies shape-based optimizations

JIT Compiler: Key Benefits and Advantages

The TPC Fuser Supports element-wise operations, reductions and normalizations

TPC-Fuser Performance Improvements

-20
-10

0
10
20
30
40
50
60

T
5

-L
A

R
G

E
-H

F
…

C
lip

-R
o

B
E

R
T

a
…

F
a

lc
o

n
-1

8
0

B
-…

Y
O

L
O

v
5

T
5

-L
A

R
G

E
-H

F
V

iT
-H

F
L

L
a

M
A

2
-7

B
-M

D
S

M
IX

T
R

A
L

-…
F

L
A

N
-T

5
-X

X
L

-…
L

L
a

M
A

2
-7

B
-…

G
P

T
J
-C

L
M

-H
F

F
L

A
N

-T
5

-X
X

L
-H

F
M

P
T

-1
B

L
L

a
M

A
-V

2
-…

C
lip

-R
o

B
E

R
T

a
…

L
L

a
M

A
-V

2
-…

A
L

B
E

R
T

-X
X

L
-H

F
T

ra
n

s
fo

rm
e

r
8

K
S

w
in

-T
-H

F
B

E
R

T
-L

-N
V

 F
T

…
T

ra
n

s
fo

rm
e

r
1

6
K

B
e

rt
-B

a
s
e

-H
F

D
is

ti
lB

E
R

T
-H

F
B

R
ID

G
E

T
O

W
E

…
G

P
T

2
-X

L
-H

F
R

o
B

E
R

T
a

…
R

o
B

E
R

T
a

…
B

E
R

T
-L

-H
F

 F
T

B
E

R
T

-L
-N

V
 F

T

End-to-end model execution

-20

0

20

40

60

80

100

120

140

160

1 5 9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3
7

7
8

1
8

5
8

9
9

3
9

7

Device execution times

How Is It Done?

Clustering + Codegen

Let's Take an Example:

The compiler merges multiple loops with the same iteration
range into a single loop

Loop Fusion

Loop Fusion

The compiler converts independent loop iterations into SIMD
instructions, based on the specific hardware vector width

Vectorization

Vectorization

The compiler combines operations from consecutive iterations
and merges them into a single iteration

Loop Unroll

unroll_factor= 2

Loop Unroll

unroll_factor= 4
"fully unroll" one of the loops

The compiler transforms the constant bounds of a loop into variables,
enabling scalable parallel execution across multiple processing units

Parallelization

Parallelization

Case Study:
Adjusting the TPC-Fuser to LLMs Recent
Challenges

Large Language Models and Triangular Softmax
•

Traditional vs. Triangular Access to the Data
•

Vectorizing triangular loops
•

Vectorizing triangular loops
•

Vectorizing triangular loops
•

Unrolling triangular loops
•

Unrolling triangular loops
•

Unrolling triangular loops
•

•

Unrolling triangular loops
•

o

•

Parallelizing triangular loops

Parallelizing Triangular Loops

μ

Parallelizing Triangular Loops

μ

Fusing Triangular and Non-triangular Loops

Fusing Triangular and Non-triangular Loops

Fusing Triangular and Non-triangular Loops

Triangular Data Access

The introduction of a new data access pattern introduced new challenges:

- Correctness challenges

- Performance challenges

- Operation fusion challenges

Key Takeaways

- The TPC Fuser is a JIT compiler for deep learning kernels

- It is deployed as part of Gaudi Synapse SW stack

- Delivers significant performance improvements

- Works in-tandem with a Graph Compiler to optimize execution

across the entire accelerator

https://developer.habana.ai/

Notices & Disclaimers

http://www.intel.com/PerformanceIndex

	Gaudi3 intro, features, architecture
	Slide 1: Speeding Up Intel Gaudi Deep-Learning Accelerators Using an MLIR-Based Compiler
	Slide 2
	Slide 3: Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Compilers 101
	Slide 9: Deep Learning Compilation 101
	Slide 10: Graph Compilation Flow: Transforming a Deep Learning Computational Graph into an Intel-Gaudi Execution Plan
	Slide 11
	Slide 12: Graph Compilation Flow
	Slide 13: What's an Ideal Execution?
	Slide 14: Graph Compiler: Slicing + Bundling
	Slide 15
	Slide 16: TPC-Fuser Performance Improvements
	Slide 17: How Is It Done?
	Slide 18: Let's Take an Example:
	Slide 19: Loop Fusion
	Slide 20: Loop Fusion
	Slide 21: Vectorization
	Slide 22: Vectorization
	Slide 23: The compiler combines operations from consecutive iterations and merges them into a single iteration
	Slide 24: Loop Unroll
	Slide 25: The compiler transforms the constant bounds of a loop into variables, enabling scalable parallel execution across multiple processing units
	Slide 26: Parallelization
	Slide 27
	Slide 28: Large Language Models and Triangular Softmax
	Slide 29: Traditional vs. Triangular Access to the Data
	Slide 30: Vectorizing triangular loops
	Slide 31: Vectorizing triangular loops
	Slide 32: Vectorizing triangular loops
	Slide 33: Unrolling triangular loops
	Slide 34: Unrolling triangular loops
	Slide 35: Unrolling triangular loops
	Slide 36: Unrolling triangular loops
	Slide 37: Parallelizing triangular loops
	Slide 38: Parallelizing Triangular Loops
	Slide 39: Parallelizing Triangular Loops
	Slide 40: Fusing Triangular and Non-triangular Loops
	Slide 41: Fusing Triangular and Non-triangular Loops
	Slide 42: Fusing Triangular and Non-triangular Loops
	Slide 43: Triangular Data Access
	Slide 44: Key Takeaways
	Slide 45
	Slide 46: Notices & Disclaimers

