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Agenda

- Deep Learning Compilers: Transforming a Large Computational Graph 

into an optimized Execution Plan 

- The TPC Fuser: A JIT compiler for deep learning kernels that delivers 

significant performance improvements

- Case Study: Adjusting the TPC-Fuser to LLMs Recent Challenges



Intel Gaudi 3 AI accelerator
Spec and Block Diagram

Feature/Product Intel® Gaudi® 3 Accelerator

BF16 Matrix TFLOPs 1835

FP8 Matrix TFLOPs 1835

BF16 Vector TFLOPs 28.7

MME Units 8

TPC Units 64

HBM Capacity 128 GB

HBM Bandwidth 3.67 TB/s

On-die SRAM Capacity 96 MB

On-die SRAM Bandwidth

RD+WR (L2 Cache)
19.2 TB/s

Networking 1200 GB/s bidirectional

Host Interface PCIe Gen5 x16

Host Interface Peak BW 128 GB/s bidirectional

Media Engine
Rotator + 14 Decoders 

(HEVC, H.264, JPEG, VP9)
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MME - Matrix Multiplication Engine

Configurable, not programmable

Each MME is a large output stationary 

systolic array

▪256x256 MAC structure w/ FP32 

accumulators

▪64k MACs/cycle for BF16 and FP8

Large systolic array reduces intra-chip 

data movement, increasing efficiency

Internal pipeline to maximize compute 

throughput

256 x 256
MME

256 input elements

256 input
elements



Vector: 256B SIMD Scalar

Register File / Vector local memory (VLM)

Store Load

HBM/L3$/L2$

AGU AGU

Fully Programmable using the TPC-C

C enhanced with TPC intrinsics

VLIW with 4 separate pipeline slots: 

Vector, Scalar, Load & Store

Integrated Address Generation Unit for HW-

accelerated address generation

Supports main 1/2/4-Byte datatypes: Floating 

Point and Integer

Tensor Processor Core (TPC):
256B-wide SIMD Vector Processor



Layered View of Intel® Gaudi® Software 
Suite

DeepSpeed
Integration

LLM serving
Integration

Quantization
Integration

Quantization Toolkit

PyTorch Integration

Graph Compiler

Collective 
Communication 

Library (CCL)
TPC Fuser

Custom
User 

TPC Kernels

Optimized 
TPC Kernel 

Library

User-Mode Driver/Run-Time Environment

Compute Driver Network Driver

Proprietary Ecosystem Integration Plugin

Intel Gaudi Software Suite



Compilers 101

Compiler(Source Code) --> Machine Code

Compiler == (               )
[semantic preserving]

Translations +  Transformations

LLVM - Low Level Virtual Machine
Clang - F



Deep Learning Compilation 101

The original Resnet-18 architecture. Up to 152 layers were 

trained in the original publication (as "ResNet-152")

- Wikipedia

tanh_f32



Graph Compilation Flow: Transforming a Deep Learning 
Computational Graph into an Intel-Gaudi Execution Plan

The original Resnet-18 architecture. Up to 152 layers were 

trained in the original publication (as "ResNet-152")

- Wikipedia

Neural Network Hardware Mapping – Use of MME and TPC



Layered View of Intel® Gaudi® Software Suite

DeepSpeed
Integration

LLM serving
Integration

Quantization
Integration

Quantization Toolkit

PyTorch Integration

Graph Compiler

Collective 
Communication 

Library (CCL)
TPC Fuser

Custom
User 

TPC Kernels

Optimized 
TPC Kernel 

Library

User-Mode Driver/Run-Time Environment

Compute Driver Network Driver

Proprietary Ecosystem Integration Plugin

TPC Kernel Library Providers

Pre-Compiled Library (TPC-C)

Intel-Gaudi optimized TPC kernel library

Custom user kernels

JIT Library

Auto-generated fused kernels, compiled during 

graph compilation, using the MLIR-based JIT 

compiler

All the kernels are compiled  using the 
Clang-based TPC Compiler



Graph Compilation Flow

The original Resnet-18 architecture. Up to 152 layers were 

trained in the original publication (as "ResNet-152")

- Wikipedia

- Processes the deep learning topology to allocate operations 

across MME, TPC, and DMA engines

▪ Generate MME Configurations

▪ Select kernels from the different kernel library providers

- Optimizes

- Schedules operations while accounting for memory constraints and dependencies

- Configures hardware registers and system settings based on the execution plane (recipe)



What's an Ideal Execution?

MMEs



Graph Compiler: Slicing + Bundling

The Graph Compiler is designed to partition data and group operations efficiently to achieve 

overlapping execution between the MME and TPC units.

This optimization maximizes the use of SRAM and local caches, enhancing data transfer efficiency.



- Spare HBM bandwidth 

- Enhances caches and local memory efficiency 

- Spare kernel-to-kernel invocation latency

- Applies shape-based optimizations

JIT Compiler: Key Benefits and Advantages

The TPC Fuser Supports element-wise operations, reductions and normalizations



TPC-Fuser Performance Improvements
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End-to-end model execution
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How Is It Done?

Clustering  +  Codegen



Let's Take an Example:



The compiler merges multiple loops with the same iteration 
range into a single loop

Loop Fusion



Loop Fusion



The compiler converts independent loop iterations into SIMD 
instructions, based on the specific hardware vector width

Vectorization



Vectorization



The compiler combines operations from consecutive iterations 
and merges them into a single iteration 

Loop Unroll

unroll_factor= 2



Loop Unroll

unroll_factor= 4
"fully unroll" one of the loops



The compiler transforms the constant bounds of a loop into variables, 
enabling scalable parallel execution across multiple processing units

Parallelization



Parallelization



Case Study: 
Adjusting the TPC-Fuser to LLMs Recent 
Challenges



Large Language Models and Triangular Softmax
•



Traditional vs. Triangular Access to the Data
•



Vectorizing triangular loops
•



Vectorizing triangular loops
•



Vectorizing triangular loops
•



Unrolling triangular loops
•



Unrolling triangular loops
•



Unrolling triangular loops
•

•



Unrolling triangular loops
•

o

•



Parallelizing triangular loops



Parallelizing Triangular Loops

μ



Parallelizing Triangular Loops

μ



Fusing Triangular and Non-triangular Loops



Fusing Triangular and Non-triangular Loops



Fusing Triangular and Non-triangular Loops



Triangular Data Access

The introduction of a new data access pattern introduced new challenges:

- Correctness challenges

- Performance challenges

- Operation fusion challenges



Key Takeaways

- The TPC Fuser is a JIT compiler for deep learning kernels

- It is deployed as part of Gaudi Synapse SW stack

- Delivers significant performance improvements

- Works in-tandem with a Graph Compiler to optimize execution 

across the entire accelerator

https://developer.habana.ai/




Notices & Disclaimers

http://www.intel.com/PerformanceIndex
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