¢ ' Core C++ 2024

(C

o Optimizing Embedded
Software Infrastructure

Akram Zoabi. Alex Kushnir






Contents

Who are we ?

Evolution of product

HW Platform Selection
Operating System Selection
Programming Language Selection
Testing

Q&A

No Ok

J&J MedTech Electrophysiology 3



Who are we?




How People See Embedded SW Engineers?
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Who are we:

Alexander Kushnir Akram Zoabi
Principal SW Engineer Sr. SW Manager
Biosense Webster, J&J MedTech Biosense Webster, J&J MedTech
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Biosense Webster part of J&J Medtech
We're the global leader in = ,,E j}ﬁ@ '! /1',

delivering innovative solutions
in electrophysiology.

The main goal is to ensure
those with cardiac arrhythmias
can live the lives they want

J&J MedTech
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Evolution and architecture

 Different Needs

» Different Regulatory
Requirements

Technology Evolution

J&J MedTech
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https://web.microsoftstream.com/video/a4f9513a-37b2-4175-b6d2-746c0ff4bc13

HW Platform
Selection




HW-SW

Interfaces

PRD and . Platform
[ Requirements Board Design Selection

« Computation considerations
* Memory consumption

« FPGA ? Is needed? Integrated? Standalone?

e Communication Protocols
» Storage requirements
« Debugging capabilities
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Operating
System
Selection
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Considerations in Choosing
Operating Systems

* Licensing

* HW interfaces

* Standard Communications
* Scalability/Utilization

* File System

* Hard Real Time Perf.

* OS primitives

* Community and support

* Memory Requirements

* Footprint

* Build configuration
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Operating systems to consider:

Linux

No operating system « distributed under the MIT License  * One of the most popular

: latf
The best performance « Small Kernel — very small footprint platforms
optimization, power, memory . Basic API for tasks, * Open-source license agreement
Limited API package supported by synchronization » Different custom distributions
the vendor « Support more than 40 » Flexibility and rich development
Management of peripherals, CPUs/MCUs application

scheduling, interrupts..
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Criteria Benchmark

Aspect Linux BareMetal freeRTOS

©
©

HW interfaces

Communications

Cores Utilization

File System

Hard Real Time Perf.
OS primitives

Memory Requirements

Footprint

@)D ©D)(D)D®,

WP OOO

Build Configuration
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Choose The Right OS — Case 1

« Soft Real Time requirements

 TCP/IP communication
* Low scalability and utilization

* No Filesystem

* Footprint is not an issue
* Limited peripherals
« Multiple tasks and threads

* Integrated CPU and FPGA for data sampling and
filtering (SOM with ARM)

J&J MedTech Electrophysiology 15



Choose The Right OS — Case 2

« Soft Real Time requirements
« TCP/IP communication
» High scalability and utilization

* Filesystem needed

« Complex logic application .
* Footprint is not an issue LlnuX
« Multiple tasks and threads

« Standalone CPU and FPGA for data sampling and
filtering
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Choose The Right OS — Case 3

« Hard Real Time requirements (Highly Regulated)
« Serial communication with embedded device

* File System NOT needed

« Simple logic application

* Footprint is an issue

 Small Microcontroller
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Make your decision

N

WO N \
@ am < ‘
Hard Realtime Requirements

°
=

=

= Limited resources
¥ NINE R
@ =

J&J MedTech

Soft Realtime Requirements

Aspect

Linux

freeRTOS

Cores Utilization

©

©

File System

©

Build Configuration

Footprint

Device Drivers

©©®

Modern C++ Libs

Off-the-shelve apps

©©

Heterogeneous Multicore Processing (HMP)
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Programming
L anguage
Selection
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Language selection

* Development effort

* Maintainability
 Complexity and abstraction
* Ecosystem

« Safety and security

* Portability

» Scalability

J&J MedTech
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The “menu”

* Alot of embedded SW engineers have a strong
C background

* Very slim (and therefore powerful) language

« “Fear” of C++ - performance, footprint, etc.

» Abstraction vs. explicitness — just at the right level
» QGreat ecosystem
* Performance aspect in latest standards

« All the advantages of OOP
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New kids on the block

e Rust

« Limited commercial support

Steep learning curve

Interoperability with existing codebases
Lack of standardization

* Limited pool of experienced engineers

« Carbon, Zig
* Not production-ready
e Uncertain future

J&J MedTech




The fear of C++

* Unexpected heap allocations

* “Not invented here” — ready
building blocks | don’t trust

* Possible performance issues —
why vector when | can use old
good C-array?

* Virtual functions overhead
« Debugging TEMPLATES!

J&J MedTech




Factors to consider

Aspect C C++
Memory

Footprint Smaller Larger
Performance Hiaher Can be less
Predictability 9 predictable
Language :
Complexity Lower Higher
Hardware More direct Abstracted
Control

Code . :
Reusability Limited Extensive
Object-

Oriented Very limited Comprehensive
Features

J&J MedTech
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And the winner is...
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Example 1—12C drivers abstraction

J&J MedTech

@ BusDevice
< const wint® t m_address

o { abstract } ReadRegister(const uint8_t address) : uints_t

e { abstract } WriteRegister(const uintd_t address, const uintd_t value) : void

‘ (© 12cpevice

© ReadRegister(const uintg_t address) - uintg_t

< WriteRegister(const uints_t address, const uintg_t value) - void

@ ADC128Monitor

(©) Pcassasiux

@ AD7A10TempSensor O uint3_t m_currentMode o PCASSASMUX)
e ADC128VoltageMonitor() e SetOutputChannel(const uint8_t output) : void
:‘;Zj}g;emﬁﬁﬁ?? souble o Gefvoltage(const uint8_t inputid) - double o GetOutputChannel() - uint8_t
pe : o GetTemperature() : double e SetConfiguration{const PCAS545Config config) : void

® SetConversionMode(const uint8_t mode) : void

e GetConfiguration() - PCA9545Config

Electrophysiology
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Example 2 - Thread portable wrapper

~Thread();

TaskHandle_t

Public API

Qi
Q;

UBaseType_t )
UBaseType_t ! ‘ [SRC);

y(UBaseType_t NewPriority);
std::strin ) X

Task execution function

askHandle_t handle;
SchedulerActive;
std: :string Name;
uintlé_t StackDepth;
BaseType_t Priority;
ThreadStarted;

Task internal state

MutexStandard StartGuardlLock;

! ( xpvParameters
J&J MedTech A :

delayUntillnitialized;

Electrophysiology
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The phantom leak: a C++ horror story

* Goal: manage a queues of std::shared_ptr<T> using
freeRTOS queues

* Mysterious memory leaks start haunting our system
* Plot twist: freeRTOS queue uses memcpy for enqueuing

* Hero of the hour: std::queue swoops in to save the day

Lesson learned: Even the smartest pointers can’t

outsmart a mismatched API!
J&J MedTech Electrophysiology



Testing
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The testability challenge

How to test? What to test? Testing level Portability

Sometimes the embedded Do we have to test Unit testing? Integration What if we decide to

machine has no CLI/Ul, and hardware? Or device testing? When we know choose different platform?

even canrunonly 1image  drivers? 3™ party code? that it is enough? Should we rewrite our unit
tests also?

Our solution

* Mock all HW/platform dependent behavior

« Compile the application logic on the development platform (Windows/Linux)
* Run the tests on your development machine

« System automated testing

J&J MedTech Electrophysiology 30



Mocking HW-dependent SW

* Replacing platform- or HW-
dependent SW with “mock”

 Allows to isolate logic
* Run tests on another platform
* Injection, compile time

* Googlemock, fff, Typemock

J&J MedTech



Example of driver injection

ICharDriverPtr

{

if (_mockTy

I
L
return
1
i ]
FISE
¥
L
return
1
i )

J&J MedTech

TxProcessor: : TxProcessor(

CreateDriver(std: : string _driverPath,

L T
LT Lol Sl ]

pe == "acltx")

std: : mak

shared<AclTxMockupDriver>(_driverPath);

ed<HWDriver>(_driverPath);

Json & _config, LoggerPtr _log)

std: : stringsk _mockType)

"modules": [
{
"id": @,
"name" : "AclTx"

"dev-name™ : "/dev/acltx"

Electrophysiology
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Unit tests vs. system tests

Unit tests System tests

« Smallest possible unit is tested * The system is tested as black box
* Focus on return value/exceptions ¢ Focus on a specific scenario

 OS and HW specifics are mocked < Real components

* Fast to run * Runs may take longer — depending
« Easier to write on the scenario
» Easily integrated into ClI * System-wide level — complex

scenarios can be tested
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Unit tests vs. system tests

Unit tests System tests

(MessageRouterTest, HandleRegisteredMessage) (PacingModuleTest, ConfigValidInMaintenance)

TCPServer srv{ [ 1Cboost: :asio: : ip: :tcp: : sockets _sock) {
MessageRouter mr;

mr.RegisterCommandHandler(MessagelD:: , &m_handler); SetSystemState(_sock, statemachine::SystemState:: );

receivedChannels = SetAndGetStimRoute(_sock, VALID_CHANNELS_2);

IncomingMessage message; (receivedChannels, VALID_CHANNELS_2);

message.m_id = MessagelD::

SetSystemState(_sock, statemachine::SystemState:: e

-

mr.HandleInboundMessage(message); R

(m_handler.GetHandledCounter(), 1);

(PacingModuleTest, DefaultRoutingOperative)
TCPServer srv{ [ 1Cboost: :asio: : ip: :tcp: : sockets _sock) {

. SetSystemState(_sock, statemachine::SystemState:: e
-(MessageRouterTest, HandleUnregisteredMessage)

receivedChannels = SetAndGetStimRoute(_sock, VALID_CHANNELS);
receivedChannels, VALID_CHANNELS);
MessageRouter mr; ( ! - )i
receivedChannels = SetAndGetStimRoute(_sock, DEFAULT_LOGICAL_CHANNELS);
IncomingMessage message; (receivedChannels, DEFAULT_INVALID_CHANNELS);
mr . HandleInboundMessage(message);
receivedChannels = SetAndGetStimRoute(_sock, VALID_CHANNELS_2);
(receivedChannels, VALID_CHANNELS_2);

(m_handler.GetHandledCounter(), 0); } )
I

J&J MedTech Electrophysiology




The benefit — case study

 Time to market
 The product was released ahead of
time
* Reusable infrastructure and OOP
boosted development time

* Quality
* Noregression was introduced during
development cycles

* Managed to simulate many scenarios
without available hardware

 Reduced number of bugs from field

J&J MedTech
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