¢ ' Core C++ 2024

(C

o Optimizing Embedded
Software Infrastructure

Akram Zoabi. Alex Kushnir

Contents

Who are we ?

Evolution of product

HW Platform Selection
Operating System Selection
Programming Language Selection
Testing

Q&A

No Ok

J&J MedTech Electrophysiology 3

Who are we?

How People See Embedded SW Engineers?

B
@5

i Il
BITS 2 L‘_ ‘

2. ;

L ¢ & s
BITSES — SR e J L) + ~ 7 — eon0-ORISE

ones in lands—_§)

X OhE IDHBIG

' 0onoNpgn

2\ 5

Application SW Engineers HW Engineers

J&J MedTech Our Managers Our Day life Electrophysiology

Who are we:

Alexander Kushnir Akram Zoabi
Principal SW Engineer Sr. SW Manager
Biosense Webster, J&J MedTech Biosense Webster, J&J MedTech

J&J MedTech Electrophysiology 6

Biosense Webster part of J&J Medtech
We're the global leader in = ,,E j}ﬁ@ '! /1',

delivering innovative solutions
in electrophysiology.

The main goal is to ensure
those with cardiac arrhythmias
can live the lives they want

J&J MedTech

Electrophysiology

7

Evolution and architecture

 Different Needs

» Different Regulatory
Requirements

Technology Evolution

J&J MedTech

Electrophysiology 8

https://web.microsoftstream.com/video/a4f9513a-37b2-4175-b6d2-746c0ff4bc13

HW Platform
Selection

HW-SW

Interfaces

PRD and . Platform
[Requirements Board Design Selection

« Computation considerations
* Memory consumption

« FPGA ? Is needed? Integrated? Standalone?

e Communication Protocols
» Storage requirements
« Debugging capabilities

J&J MedTech Electrophysiology

Operating
System
Selection

Electrophysiology @ ™

Considerations in Choosing
Operating Systems

* Licensing

* HW interfaces

* Standard Communications
* Scalability/Utilization

* File System

* Hard Real Time Perf.

* OS primitives

* Community and support

* Memory Requirements

* Footprint

* Build configuration

J&J MedTech Electrophysiology

Operating systems to consider:

Linux

No operating system « distributed under the MIT License * One of the most popular

: latf
The best performance « Small Kernel — very small footprint platforms
optimization, power, memory . Basic API for tasks, * Open-source license agreement
Limited API package supported by synchronization » Different custom distributions
the vendor « Support more than 40 » Flexibility and rich development
Management of peripherals, CPUs/MCUs application

scheduling, interrupts..

J&J MedTech Electrophysiology 13

Criteria Benchmark

Aspect Linux BareMetal freeRTOS

©
©

HW interfaces

Communications

Cores Utilization

File System

Hard Real Time Perf.
OS primitives

Memory Requirements

Footprint

@)D ©D)(D)D®,

WP OOO

Build Configuration

J&J MedTech Electrophysiology

Choose The Right OS — Case 1

« Soft Real Time requirements

 TCP/IP communication
* Low scalability and utilization

* No Filesystem

* Footprint is not an issue
* Limited peripherals
« Multiple tasks and threads

* Integrated CPU and FPGA for data sampling and
filtering (SOM with ARM)

J&J MedTech Electrophysiology 15

Choose The Right OS — Case 2

« Soft Real Time requirements
« TCP/IP communication
» High scalability and utilization

* Filesystem needed

« Complex logic application .
* Footprint is not an issue LlnuX
« Multiple tasks and threads

« Standalone CPU and FPGA for data sampling and
filtering

J&J MedTech Electrophysiology 16

Choose The Right OS — Case 3

« Hard Real Time requirements (Highly Regulated)
« Serial communication with embedded device

* File System NOT needed

« Simple logic application

* Footprint is an issue

 Small Microcontroller

J&J MedTech Electrophysiology 17

Make your decision

N

WO N \
@ am < ‘
Hard Realtime Requirements

°
=

=

= Limited resources
¥ NINE R
@ =

J&J MedTech

Soft Realtime Requirements

Aspect

Linux

freeRTOS

Cores Utilization

©

©

File System

©

Build Configuration

Footprint

Device Drivers

©©®

Modern C++ Libs

Off-the-shelve apps

©©

Heterogeneous Multicore Processing (HMP)

Electrophysiology

18

Programming
L anguage
Selection

Electrophysiology @ 19

Language selection

* Development effort

* Maintainability
 Complexity and abstraction
* Ecosystem

« Safety and security

* Portability

» Scalability

J&J MedTech

P
<

rogramming

!

Language ' /

The “menu”

* Alot of embedded SW engineers have a strong
C background

* Very slim (and therefore powerful) language

« “Fear” of C++ - performance, footprint, etc.

» Abstraction vs. explicitness — just at the right level
» QGreat ecosystem
* Performance aspect in latest standards

« All the advantages of OOP

2

New kids on the block

e Rust

« Limited commercial support

Steep learning curve

Interoperability with existing codebases
Lack of standardization

* Limited pool of experienced engineers

« Carbon, Zig
* Not production-ready
e Uncertain future

J&J MedTech

The fear of C++

* Unexpected heap allocations

* “Not invented here” — ready
building blocks | don’t trust

* Possible performance issues —
why vector when | can use old
good C-array?

* Virtual functions overhead
« Debugging TEMPLATES!

J&J MedTech

Factors to consider

Aspect C C++
Memory

Footprint Smaller Larger
Performance Hiaher Can be less
Predictability 9 predictable
Language :
Complexity Lower Higher
Hardware More direct Abstracted
Control

Code . :
Reusability Limited Extensive
Object-

Oriented Very limited Comprehensive
Features

J&J MedTech

W0 Doertus neavs Inet Lbin. Unerd (W

Business
Decision Tree

And the winner is...

J&J MedTech Electrophysiology 25

Example 1—12C drivers abstraction

J&J MedTech

@ BusDevice
< const wint® t m_address

o { abstract } ReadRegister(const uint8_t address) : uints_t

e { abstract } WriteRegister(const uintd_t address, const uintd_t value) : void

‘ (© 12cpevice

© ReadRegister(const uintg_t address) - uintg_t

< WriteRegister(const uints_t address, const uintg_t value) - void

@ ADC128Monitor

(©) Pcassasiux

@ AD7A10TempSensor O uint3_t m_currentMode o PCASSASMUX)
e ADC128VoltageMonitor() e SetOutputChannel(const uint8_t output) : void
:‘;Zj}g;emﬁﬁﬁ?? souble o Gefvoltage(const uint8_t inputid) - double o GetOutputChannel() - uint8_t
pe : o GetTemperature() : double e SetConfiguration{const PCAS545Config config) : void

® SetConversionMode(const uint8_t mode) : void

e GetConfiguration() - PCA9545Config

Electrophysiology

26

Example 2 - Thread portable wrapper

~Thread();

TaskHandle_t

Public API

Qi
Q;

UBaseType_t)
UBaseType_t ! ‘ [SRC);

y(UBaseType_t NewPriority);
std::strin) X

Task execution function

askHandle_t handle;
SchedulerActive;
std: :string Name;
uintlé_t StackDepth;
BaseType_t Priority;
ThreadStarted;

Task internal state

MutexStandard StartGuardlLock;

! (xpvParameters
J&J MedTech A :

delayUntillnitialized;

Electrophysiology

27

The phantom leak: a C++ horror story

* Goal: manage a queues of std::shared_ptr<T> using
freeRTOS queues

* Mysterious memory leaks start haunting our system
* Plot twist: freeRTOS queue uses memcpy for enqueuing

* Hero of the hour: std::queue swoops in to save the day

Lesson learned: Even the smartest pointers can’t

outsmart a mismatched API!
J&J MedTech Electrophysiology

Testing

J&J MedTech Electrophysiology 29

The testability challenge

How to test? What to test? Testing level Portability

Sometimes the embedded Do we have to test Unit testing? Integration What if we decide to

machine has no CLI/Ul, and hardware? Or device testing? When we know choose different platform?

even canrunonly 1image drivers? 3™ party code? that it is enough? Should we rewrite our unit
tests also?

Our solution

* Mock all HW/platform dependent behavior

« Compile the application logic on the development platform (Windows/Linux)
* Run the tests on your development machine

« System automated testing

J&J MedTech Electrophysiology 30

Mocking HW-dependent SW

* Replacing platform- or HW-
dependent SW with “mock”

 Allows to isolate logic
* Run tests on another platform
* Injection, compile time

* Googlemock, fff, Typemock

J&J MedTech

Example of driver injection

ICharDriverPtr

{

if (_mockTy

I
L
return
1
i]
FISE
¥
L
return
1
i)

J&J MedTech

TxProcessor: : TxProcessor(

CreateDriver(std: : string _driverPath,

L T
LT Lol Sl]

pe == "acltx")

std: : mak

shared<AclTxMockupDriver>(_driverPath);

ed<HWDriver>(_driverPath);

Json & _config, LoggerPtr _log)

std: : stringsk _mockType)

"modules": [
{
"id": @,
"name" : "AclTx"

"dev-name™ : "/dev/acltx"

Electrophysiology

32

Unit tests vs. system tests

Unit tests System tests

« Smallest possible unit is tested * The system is tested as black box
* Focus on return value/exceptions ¢ Focus on a specific scenario

 OS and HW specifics are mocked < Real components

* Fast to run * Runs may take longer — depending
« Easier to write on the scenario
» Easily integrated into ClI * System-wide level — complex

scenarios can be tested

J&J MedTech Electrophysiology 33

Unit tests vs. system tests

Unit tests System tests

(MessageRouterTest, HandleRegisteredMessage) (PacingModuleTest, ConfigValidInMaintenance)

TCPServer srv{ [1Cboost: :asio: : ip: :tcp: : sockets _sock) {
MessageRouter mr;

mr.RegisterCommandHandler(MessagelD:: , &m_handler); SetSystemState(_sock, statemachine::SystemState::);

receivedChannels = SetAndGetStimRoute(_sock, VALID_CHANNELS_2);

IncomingMessage message; (receivedChannels, VALID_CHANNELS_2);

message.m_id = MessagelD::

SetSystemState(_sock, statemachine::SystemState:: e

-

mr.HandleInboundMessage(message); R

(m_handler.GetHandledCounter(), 1);

(PacingModuleTest, DefaultRoutingOperative)
TCPServer srv{ [1Cboost: :asio: : ip: :tcp: : sockets _sock) {

. SetSystemState(_sock, statemachine::SystemState:: e
-(MessageRouterTest, HandleUnregisteredMessage)

receivedChannels = SetAndGetStimRoute(_sock, VALID_CHANNELS);
receivedChannels, VALID_CHANNELS);
MessageRouter mr; (! -)i
receivedChannels = SetAndGetStimRoute(_sock, DEFAULT_LOGICAL_CHANNELS);
IncomingMessage message; (receivedChannels, DEFAULT_INVALID_CHANNELS);
mr . HandleInboundMessage(message);
receivedChannels = SetAndGetStimRoute(_sock, VALID_CHANNELS_2);
(receivedChannels, VALID_CHANNELS_2);

(m_handler.GetHandledCounter(), 0); })
I

J&J MedTech Electrophysiology

The benefit — case study

 Time to market
 The product was released ahead of
time
* Reusable infrastructure and OOP
boosted development time

* Quality
* Noregression was introduced during
development cycles

* Managed to simulate many scenarios
without available hardware

 Reduced number of bugs from field

J&J MedTech

1hank you

Johnson&dJohnson
MedTech Electrophysiology

	Slide 1: Optimizing Embedded Software Infrastructure
	Slide 2: Optimizing Embedded Software Infrastructure: Principles and Practices for Platform Selection
	Slide 3: Contents
	Slide 4: Who are we?
	Slide 5: How People See Embedded SW Engineers?
	Slide 6: Who are we:
	Slide 7: Biosense Webster part of J&J Medtech
	Slide 8: Evolution and architecture
	Slide 9: HW Platform Selection
	Slide 10: SW requirements from HW
	Slide 11: Operating System Selection
	Slide 12: Considerations in Choosing Operating Systems
	Slide 13: Operating systems to consider:
	Slide 14: Criteria Benchmark
	Slide 15: Choose The Right OS – Case 1
	Slide 16: Choose The Right OS – Case 2
	Slide 17: Choose The Right OS – Case 3
	Slide 18: Make your decision
	Slide 19: Programming Language Selection
	Slide 20: Language selection
	Slide 21: The “menu”
	Slide 22: New kids on the block
	Slide 23: The fear of C++
	Slide 24: Factors to consider
	Slide 25: And the winner is…
	Slide 26: Example 1 – I2C drivers abstraction
	Slide 27: Example 2 - Thread portable wrapper
	Slide 28: The phantom leak: a C++ horror story
	Slide 29: Testing
	Slide 30: The testability challenge
	Slide 31: Mocking HW-dependent SW
	Slide 32: Example of driver injection
	Slide 33: Unit tests vs. system tests
	Slide 34: Unit tests vs. system tests
	Slide 35: The benefit – case study
	Slide 36: Thank you

