
Video Rendering
on Frontend and Backend

2

Lightricks is the creator of numerous award-winning photo and
video editing apps. Our goal is to build fun and powerful tools
that reinvent the way content is created all over the world.

Established 2013 HQ in Jerusalem, branches in
Haifa & London

~400 Employees

12 Apps We’re a Unicorn!

Boosted Web

3

https://docs.google.com/file/d/1vyGNjTU7LIXE9ZfWYO0kMmL5a8NX5TDH/preview

The Playloop

Decode frame

centerX = 0.5 + time * 0.2

Interpolate values

Render frame

Display

Encode to video file

* Links to more info about value interpolation are in the last slide

Can we do that in the browser?

Decode:

HTMLVideoElement

Interpolate:

pure logic

Render:

WebGL

Encode:

Software codec

5

But...

● HTMLVideoElement

○ Can’t give source frame rate

○ Can’t seek to frame

○ Is geared for real-time playing

■ will skip frames during heavy workload

● We can code around it

○ Working against the intended usage

○ Will work on some browsers

6

Alternative

● Software emulation

● FFmpeg library

○ either back-and-forth in backend

○ or large import in frontend

○ Both are slow

7

Let’s split!
Browser:

Decode frame with
HTMLVideoElement

Render frame Display

Server:

Encode to

video file

Decode frame

with FFmpeg Render frame

Stacks

9

Browser Server

Language Javascript C++

Decoding HTMLVideoElement FFmpeg

Rendering

10

OpenGL / WebGL as API

GL - Graphics Library

Same functionality, different structure

OpenGL - global state machine

WebGL - object oriented

Stacks

11

Browser Server

Language Javascript C++

Decoding HTMLVideoElement FFmpeg

Rendering WebGL OpenGL

Stacks

12

Browser Server

Language Javascript C++

Decoding HTMLVideoElement FFmpeg

Rendering WebGL OpenGL

Text Shaping

Stacks

13

Browser Server

Language Javascript C++

Decoding HTMLVideoElement FFmpeg

Rendering WebGL OpenGL

Text Shaping

And more

WebAssembly

14

WASM in short

Available in browsers

Standard for secure,
performant, cross- platform
computing

Compiled from any language

* Links to more info about WebAssembly are in the last slide

Emscripten - compiler toolchain

15

Compile code to WASM

OpenGL + Cpp = WASM +
JavaScript + WebGL

Create JavaScript bindings Abstract interfaces to use
JavaScript objects

Stacks

16

Browser Server

Language Javascript & C++ C++

Decoding HTMLVideoElement FFmpeg

Rendering OpenGL

Text Shaping ...

And more ...

Let’s combine code!

Decode frame with
HTMLVideoElement

Render frame

Display

Browser:

Encode to video file

Decode frame

with FFmpeg

Server:

Story Time!

18

WebAssembly — What does security mean?

WASM has separate memory

19

This means that everything
must be copied

Can’t access runtime memory WASI — WebAssembly
System Interface

Loading frames to textures

20

Textures represented by opaque JS
objects

Has API for fast loading of textures from HTMLVideoElement

What’s a HTMLVideoElement?

Textures represented by IDs

The Problem

21

renderer code uses OpenGL,
frontend code uses WebGL

Copy to WebGL texture —
not available in C++

How to efficiently pass the
frame data to WASM

Frame data — copy to
WASM’s memory

Restating the Problem

22

Data in JavaScript, needs to
be consumed in WASM

Data copy is expensive Abstraction layer separates
between WASM and
JavaScript

Can’t use the same objects
on both sides

Misusing Emscripten for fun & profit

23

Emscripten calls WebGL with
OpenGL code

Emscripten gives OpenGL
texture identifiers to WebGL
textures

getNewId — a function that
inserts to array, and returns
index as identifier

TexturesFrame buffers

WebGL
objects

https://github.com/emscripten-core/emscripten/blob/660dcc00598495f5cf353771995d77a13735c0c9/src/library_webgl.js#L241

Solution

24

Create textures

Use texture identifier

Create texture identifier using
Emscripten’s getNewId

Load frame data Explicitly remove
texture identifier

All’s well that ends well

25

We’ve reached 60 FPS We wrote the engine once,
used it twice

The bridging code is minimal

Is This Smart?

26

Relying on internal API which
might change — Bad

Bridging abstraction gap —
Necessary

Manually Managing texture
lifetime isn’t great

Final score: 🤷🤷🤷🤷

Bottom line

27

We can write C++ code and
run it everywhere

Everything is more
complicated when rendering :(

Emscripten bridges a lot of
platform differences

Some hacking might still be
required

Links!

28

Check out the app

My talk about value interpolation

Lin Clark’s excellent intro to WebAssembly

My talk about the history of efficient computinting on the web

Contact me

https://app.boosted.lightricks.com/
https://www.youtube.com/watch?v=d2eihVaJLNE
https://hacks.mozilla.org/2017/02/a-cartoon-intro-to-webassembly/
https://youtu.be/YOntnlfLBHw?t=890
mailto:shachar@lightricks.com

We are hiring!
Lightricks.com/careers

