
Correctly Calculating min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 1

Correctly Calculating

min, max, and More

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Edi$on: 2022-03-31. Copyright ©  2020-2022 by Walter E. Brown. All rights reserved.

What Can Go Wrong?
A little about me
• B.A. (math’s); M.S., Ph.D. (computer science).
• Professional programmer for over 50 years, 

programming in C++ since 1982.
• Experienced in industry, academia, consulting, 

and research:
! Founded a Computer Science Dept.; served as Professor 

and Dept. Head; taught and mentored at all levels.
! Managed and mentored the programming staff for a reseller.
! Lectured internationally as a software consultant and 

commercial trainer.
! Retired from the Scientific Computing Division at Fermilab, 

specializing in C++ programming and in-house consulting.
• Not dead — still doing training & consulting.  (Email me!)

4C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Emeritus participant in C++ standardization
• WriYen ∼175 papers for WG21, proposing such 

now-standard C++ library features as gcd/lcm,
cbegin/cend, common type, and void t, as well 
as all of headers <random> and <ra_o>.

• Influenced such core language features as alias templates, 
contextual conversions, and variable templates; recently 
worked on requires-expressions, operator<=>, and more!

• Conceived and served as Project Editor for Int’l Standard 
on Mathema:cal Special Func:ons in C++ (ISO/IEC 29124), 
now incorporated into <cmath>.

• Be forewarned: Based on my training and experience, 
I hold some rather strong opinions about computer sogware 
and programming methodology — these opinions are not 
shared by all programmers, but they should be!  "

5C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .
C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se r ve d .

The Big Picture

“The study of error … 
serves as a stimulating introduction 
to the study of truth.”

— Walter Lippmann

About this talk
• The C++ standard library long ago selected operator < 

as its ordering primi8ve, and even spells it in several 
different ways (e.g., std::less).

• Today, we will first illustrate why operator < must be
used with care, in even seemingly simple algorithms 
such as max and min.

• Then we will discuss the use of operator < in other 
order-related algorithms, showing how easy it is to 
make mistakes when using the operator < primi8ve 
directly, no maDer how it’s spelled.

• Along the way, we will also present a straighGorward 
technique to help us avoid such mistakes.

7C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved . 8C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

“One of the amazing things which we … 
discover is that ordering is very important.

Things which we could do with ordering 
cannot be effec8vely done just with equality.”

— Alexander Stepanov
(né Алекса́ндр Степа́нов)



Correctly Calculating min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 2

Speaking of ordering:  Oops!

9C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .
C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se r ve d .

Early Adventures
with min and max

“Life is trying things to see if they work.”
— Ray Bradbury

An intuitive approach  ➀
• As func8on-like macros in the C style:
! #define MIN (a, b)  ( (a) < (b) ? (a) : (b) )

! #define MAX (a, b)  ( (b) < (a) ? (a) : (b) )

• Repackaged, now as func8ons (with one overload/type):
! int min ( int a, int b )  {  return a < b ? a : b;  }

! int max ( int a, int b )  {  return b < a ? a : b;  }

• LiRed, now as simple (C++20) func8on templates:
! auto min ( auto a, auto b )  {  return a < b ? a : b;  }
! auto max ( auto a, auto b )  {  return b < a ? a : b;  }

11C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

An intuitive approach  ➁
• But those C++ templates …

! auto min ( auto a, auto b )  {  return a < b ? a : b;  }
! auto max ( auto a, auto b )  {  return b < a ? a : b;  }

… have a few issues:

✘ The by-value parameter passage is poten_ally expensive
(e.g., for large string arg’s).

✘ When the arguments have dis_nct types, it’s unclear what 
the return type should be.  (Can we even compare such arg’s
generically?  E.g., consider signed vs. unsigned [forthcoming!])

✘ Major concern:  are the algorithms correct for all values?

12C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

The cures are mostly straightforward
• Per the std library’s specifica8on:
# Enforce consistent types via a named type parameter.
# Avoid expensive copies via call/return by ref-to-const.

• ARer these adjustments we have:
! template< class T >

T const &
min( T const & a, T const & b )  { return a < b ? a : b; }

! And analogously for max.

• (But pls recall that lvalue ref’s to rvalues can be subtle):
# auto z  =  min( x.calc( ), y.calc( ) );  // copies a temporary
✘ auto & r  =  min( x.calc( ), y.calc( ) );  // dangling reference!

13C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .
C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se r ve d .

So What’s Wrong?

“[N]ever feel badly about making mistakes ... 
as long as you … learn from them.”

― Norton Juster



Correctly CalculaEng min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 3

Alas, none of the code I’ve shown so far is quite right!
• Can you iden8fy the misbehavior(s)?
! template< class T >

T const &
min ( T const & a, T const & b )  { return a < b ? a : b; }

! template< class T > 
T const &

max( T const & a, T const & b )  { return b < a ? a : b; }

• Did you no8ce that each returns b when a == b?
! Why should max and min of the same two arguments 

ever give the same result?
! Yet the C++ standard library does this.

(“It took Stepanov 15 years to get min and max right.”)

16C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

To be specific, …
• … these algorithms mishandle the case of a == b!
! “[At] CppCon 2014, CommiYee member Walter Brown 

men_oned that [std::] max returns the wrong value 
[when] both arguments have an equal value. … 

! “Why should it maRer which value is returned?”

• Many programmers have made similar observa8ons:
1. That equal values are indis_nguishable, so …
2. It ought not maYer which is returned, so ...
3. This is an uninteres_ng case, not worth discussing.

• Alas, for min and max (and related) algorithms, such 
opinions are superficial and incorrect!

17C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Alex. Stepanov speaks candidly of his mistake [2013]

18C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

“How stupid 
could one be?

I mean, one 
spends decades 
working on all 

these orderings, 
and writing min

in the most 
generic way,
and then he 

writes max and 
he screws it up!

And that person 
is me. 

And you will say, 
‘Well, but 

nobody will 
remember that.’

Oh, no.  People 
will remember 
for centuries 

because that’s 
the max in the 

standard library!

So for as long as 
C++ stands, my 
shame will be 

publicly visible.”

• Bare-bones example:
! struct  student  {

string  name;  int  id;
inline  sta_c  int  registrar  =  0;
S( string n ) : name{ n }, id{ registrar++ }  {  } // c’tor
bool

operator < ( student s )
{ return name <  s.name; } // id is not salient

};

• Since each student variable has a unique id number:
! Even equal values are dis_nguishable, so …
! It can maYer greatly which one is returned by min/max!

Many types do distinguish equal values

19C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se r ve d .

How Do We Address This?

“[O]nly wise men learn from their mistakes.”
― Winston Churchill

A mathematics perspective
• A monotonically increasing sequence is sorted:
! But not conversely!

! Counterexample:  a sequence of iden_cal values is 
sorted, but is certainly not monotonically increasing.

• Instead, we must say:
! That a sequence is sorted iff it is non-decreasing.

! This allows us to have equal items in a sorted sequence.

• C++ embraces this viewpoint (see [alg.sor:ng.general]/5):
! A seq. is sorted if, for every iterator i and non-nega_ve 

integer n, ∗(i + n) < ∗i is  false [i.e., not out of order].

21C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .



Correctly CalculaEng min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 4

An important insight
• Given two values a and b, in that order:

! Unless we find a reason to the contrary, …

! min should prefer to return a, and …

! max should prefer to return b.

• I.e., never should max and min return the same item:

! When values a and b are in order, 
min should return a / max should return b; and …

! When values a and b are out of order, 
min should return b / max should return a.

22C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

• We should always prefer algorithmic stability …
! … especially when it costs nothing to provide it!

• Recall what we mean by stability:
! An algorithm dealing with items’ order is stable …
! If it keeps the original order of equal items.

• I.e., a stable algorithm ensures that:
! For all pairs of equal items a and b, …
! a will precede b in its output …
! Whenever a preceded b in its input.

Even more succinctly stated

23C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Therefore, I recommend …
• For min:
! ⋯ {  return out of order(a, b)  ?  b  :  a;  }   // in order ? a : b

• For max:
! ⋯ {  return out of order(a, b)  ?  a :  b;  } // in order ? b : a

• Where:
! inline bool  

out of order( ⋯ x, ⋯ y )  {  return  y  <  x;  } // !!!

! inline bool  
in order( ⋯ x, ⋯ y )  {  return  not  out of order(x, y);  }

! (FWIW, I find out of order to be the more useful.)

24C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

“Is there a reason to do otherwise?”

C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se r ve d .

These Ideas Are Broadly Applicable

“A theory is the more impressive the greater 
the simplicity of its premises … and the more 
extended its area of applicability.”

― Albert Einstein

Analogous logic also applies elsewhere  ➀
• template< class T >

T const &   // since C++17
clamp( T const & v, T const & lo, T const & hi )

{  // precondiTon:  in order(lo, hi)
return out of order(lo, v)  ?  lo

: out of order(v, hi)  ?  hi
: v;

}

• Contrast with this body, taken from a very recent blog:

! { return (v > lo) ? lo : (hi < v) ? hi : v; }    // is this correct?

! This is an error (since corrected!) that commonly arises 
when comparisons are inconsistent.

26C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

“Prefer to return the supplied value v;  
need a reason to return either lo or hi.”

27C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Analogous logic also applies elsewhere  ➁
• template< input iterator In, output iterator<In> Out >

Out  merge( In  b1,  In  e1 // 1st sorted input sequence
, In  b2,  In  e2 // 2nd sorted input sequence
, Out  to )  { // merged des:na:on

for(  ;  ;  ++to )
if ( b2 == e2 )  return  copy( b1, e1, to );
else if ( b1 == e1 )  return  copy( b2, e2, to );
else  // assert:  neither sequence is empty
∗to  =  out of order(∗b1, ∗b2)  ? ∗b2++

:  ∗b1++;
}

“Prefer to take from the 1st sequence; 
need a reason to take from the 2nd.”



Correctly CalculaEng min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 5

Analogous logic also applies elsewhere  ➂
• template< swappable T >

void  sort2( T & a, T & b )  {
if(  out of order(a, b)  )

swap(a, b);
}   // postcondiTon:  in order(a, b)

• template< swappable T >   // C++20
void  sort3( T & a, T & b, T & c )  {

if(  sort2(a, b);  in order(b, c)  )  return;
if(  swap(b, c);  in order(a, b)  )  return;
swap(a, b);

}
! (BTW, did you recognize bubble sort?)

28C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

if( in order(a, b) )  return;
swap(a, b);

Algorithm logic from stackoverflow — is this correct?
• template< class T > 

void  sort3( T & a, T & b, T & c )  {
if( a < b )  {

if( b < c )  return;
else if( a < c )  swap(b, c);
else  {  /∗ rotate right into order c, a, b ∗/ }

}
else  {

if( a < c )  swap(a, b);
else if( c < b )  swap(a, c);
else  {  /∗ rotate leY into order b, c, a ∗/ }

}
}

29C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Algorithm does more 
work than necessary: 

operator < is no 
subs_tute for in order!

Algorithm isn’t stable: 
operator < is no 

subs_tute for in order!

Our main takeaways so far

31C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

By itself,  operator < is not sufficient 
to decide whether 

its operands are in order.

By itself,  operator < is sufficient 
to decide only whether 

its reversed operands are out of order.

C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se rv e d .

operator< Is Spelled Other Ways, Too

“Sameness is :resome; variety is pleasing.”
― Mark Twain

Many std algorithms don’t use operator < per se

• Standard library algorithms oRen specify an overload 
with an extra parameter, comp, such that:
! comp(x, y) is called to decide ordering in lieu of x < y.

• Example:
! template< class Fwd >

constexpr Fwd
is sorted un_l( Fwd first, Fwd last );    // uses operator <

! template< class Fwd, class Compare >
constexpr Fwd

is sorted un_l( Fwd first, Fwd last, Compare comp );
// calls comp in place of operator <

33C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

About the is sorted until algorithm
• “Returns:  The last iterator i in [first, last] for which the 

range [first, i) is sorted….  Complexity:  Linear.”
! I.e., i induces adj. partitions [first, i) and [i, last) where …
! The former is known to be sorted and of maximal length.

• Equivalently (but better for algorithmic thinking), without i :
! Treat [⋯, first) as a partition that’s known to be sorted, 

with an adjoining partition [first, last) in unknown order.
! Iteratively advance first so long as ∗first is in sorted order 

with respect to its immediate predecessor (say, ∗prev).

! By construction, sorted partition [⋯, first) has maximal 
length, so we return first (for even empty or singleton ranges).

34C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .



Correctly CalculaEng min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 6

My earliest operator < implementation [edited for exposition]

• template< class Fwd > // forward iterator
constexpr Fwd

is sorted until( Fwd first, Fwd last )
{

if(  first  !=  last  )
// init/reinit loop as if by  prev = first++ :
for(  Fwd prev = first;  ++first != last;  prev = first  )

if(  ∗first  <  ∗prev )       // in order?  out of order?
break;

return first;
}

35C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Tip:  prefer pre-increment; 
need a reason to use post-increment.

(Di>o for pre- vs post-decrement.)

Nowadays, I prefer and recommend …

36C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

• … to use a named order predicate.

• template< class Fwd >
constexpr Fwd

is sorted un_l( Fwd first, Fwd last )
{

auto  out of order  =  [ ]  ( ⋯ x, ⋯ y )  { return ∗y < ∗x; };
if(  first != last  )

for(  Fwd prev = first;  ++first != last;  prev = first  )
if(  out of order(prev, first)  )

break;
return  first;

}

#define  out of order( x, y )  ( ∗(y) < ∗(x) )

Tip:  Pass the iterators
(which are typically cheap to copy)

rather than the dereferenced values
(which may be not even copyable)!

[alg.sorting.general]/2-3 [rearranged]
• “[The declara8on] Compare comp is used throughout 

[as a parameter that denotes] an ordering rela8on.”
! “Compare is a func_on object type [whose] call 

opera_on … yields true if the first argument of the call 
is less than the second, and false otherwise.”

! “… comp [induces] a strict weak ordering on the values.”

! “For all algorithms that take Compare, there is a version 
that uses operator < instead.”

• IMO, the names comp and Compare are too general:
! I’d prefer, e.g., s/comp/less than/ or s/comp/lt/ or

s/comp/precedes/ or s/comp/before/.

37C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Even when we have an explicit less-than predicate …
• ... I s8ll recommend adap8ng it via an order predicate.

• template< class Fwd, class Compare >
constexpr Fwd

is sorted un_l( Fwd first, Fwd last, Compare precedes )
{

auto  iter out of order     // could be named indirect out of order
=  [=]  ( Fwd x, Fwd y )   { return precedes(∗y, ∗x); };

if(  first != last  )
for(  Fwd prev = first;  ++first != last;  prev = first  )

if(  iter out of order(prev, first)  )
break;

return  first;
}

38C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Or we can avoid overloading …
• … via a single template that has judicious default arg’s:
! template< class Fwd, class Compare = std::ranges::less >

constexpr Fwd
is sorted un_l( Fwd first, Fwd last, Compare lt = { } )

{
⡆ // unchanged

}

• Q1:  What, exactly, is std::ranges::less?

• Q2:  Do we need both a default func8on argument and
a default template argument?

39C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Q1: What’s std::ranges::less?
• It’s a class declared in <func8onal>:
! struct  less  { // simplified for exposiTon

template< class T, class U >
constexpr bool

operator ( ) ( T && t, U && u )  const
{  return  t < u;  } // note: heterogeneous comparison

};

! A variable of type less is a func_on object, as it’s callable
via its operator ( ) member template.

• (There’s also std::less, a template whose operator ( )
is strictly homogeneous [more later].  Many/most today 
seem to prefer the design of std::ranges::less.)

40C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .



Correctly CalculaEng min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 7

Q2: Do algorithms need both default argument kinds?
• Let’s review the algorithm’s decl., then consider a call:
! template< class Fwd, class Compare = std::ranges::less >

constexpr Fwd
is sorted un_l( Fwd first, Fwd last, Compare lt = { } ) ;

! int  a[N]  =  { ⋯ };
⋯ is sorted un_l( a+0, a+N ) ⋯ // what type is Fwd? 

! Fwd is inferred as int ∗.  Now: what type is Compare?

• It’s std::ranges::less, per the default template arg:
! A type is never inferred from any default func_on arg.

! Enables calling code to default-construct a 3rd argument, 
in this case std::ranges::less{ } .

41C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Q3: Why doesn’t the std library use such default arg’s?
• In brief, because it’s prohibited (unless thusly specified):
! “An implementa_on shall not declare a non-member 

func_on signature with addi_onal default arguments.” 
(See [global.funcDons]/3.)

• Why not consolidate? Because doing so is problema8c:
! “The difference between two overloaded func_ons and 

one func_on with a default argument can be observed
by taking a pointer to func_on.”  (See N1070, 1997.)

! Further, consider a call supplying a type but not a value:
template< class T = int >  void g(  T x = { }  )  { ⋯ }
⋮

g<MyType>( ); // what if MyType isn’t default-construcTble?

42C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se r ve d .

std Disguises for operator<

“Everybody's wearing a disguise….”
― Bob Dylan

How many ways can std design and spell operator < ?

44C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Name Where found Since Arg. types

class template
less <functional> C++98 T, T

specialization
less<void> <functional> C++14 T, U

class
ranges::less <functional> C++20 T, U

function template
cmp₋less <utility> (why?) C++20 integer I, J

overload set
isless <cmath> C++11 arith A, B

specification
totalOrder

IEEE 754; in spec of
<compare>’s 
strong₋order

2008;
C++20 flt-pt F, F

My version of std::ranges::less [edited for exposition]

• struct  less
{

template< class L, class R >
constexpr bool

operator( ) ( L && leg, R && right ) const noexcept(⋯)
{

if constexpr( are std integer types<L, R> )
return  cmp less( leg, right ); // forthcoming

else if constexpr( are std arithme_c types<L, R> )
return  isless( leg, right ); // forthcoming

else
return  forward<L>(leg)  < forward<R>(right);

}
};

45C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

My version of std::cmp less [edited for exposition]

• template< std integer type L, std integer type R >
constexpr  bool

cmp less( L left, R right ) noexcept
{

if constexpr( same signedness types<L, R> )
return  left  <  right;   // safely converts lesser to greater rank

else  // mixed signedness
if constexpr( signed type<L> )  // and unsigned type<R>

return  left  <  0  ?  true  :  as unsigned(left) < right;
else   // unsigned type<L> and signed type<R>

return  right  <  0  ?  false  :  left  <  as unsigned(right);
}

46C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .



Correctly Calculating min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 8

My version of std::isless [edited for exposition]

• template< std arithmetic type L, std arithmetic type R >
constexpr  bool

isless( L left, R right ) noexcept // not an overload set
{

using  fl t  =  common floating point t<L, R>;
fl t  x  =  left

,  y  =  right;
return  isunordered(x, y)  ?  false // avoid FE_INVALID

:  x  <  y;
}

47C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

The ordering specified by IEEE’s totalOrder predicate
• Most- to least-nega8ve, then least- to most-posi8ve.

• I.e., first all nega8ve values, in the following order:
! All nega_ve quiet NaNs, then all nega_ve signaling NaNs, 

each ordered per their payload bits.

! Then nega_ve infinity, then all nega_ve normalized and 
denormal numbers in value order, then nega_ve zero.

• Then all posi8ve values, in the opposite order:
! Posi_ve zero, then all posi_ve denormal and normalized 

numbers in value order, then posi_ve infinity.

! All posi_ve signaling NaNs, then all posi_ve quiet NaNs, 
each ordered per their payload bits.

48C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Now consider IEEE’s floating-point layout in that light
• Relative to trad. scientific notation ±d.d… 𝗑 10±e…, 

IEEE decomposes/rebases/reorders/adjusts its parts:

49C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

What if we treated 
these bits as a 

32|64|128-bit int?

My version of IEEE’s totalOrder [edited for exposition]
• template< floa_ng point type F > // assumes IEEE rep’s

constexpr  bool
total order( F leg, F right ) noexcept // 2008−2018 signature

{
if(  signbit(leg)  !=  signbit(right)  ) // one is negaTve, one is not

return  signbit(leg);
else  {   // same signs

using  int t  =  big enough type< sizeof(F)
,  int32 t, int64 t, int128 t >;

int t  x  =  bit cast< int t >( leg )
,  y  =  bit cast< int t >( right );

return  signbit(x)  ?  in order(y, x) // both are negaTve
:   in order(x, y); // neither is negaTve

}
}

50C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

And one more: lexicographical compare! [edited for exposition]

• template< input iterator  In1, input iterator  In2 >
constexpr bool

lexicographical compare( In1 first1,  In1 last1
, In2 first2,  In2 last2
)

{
for(   ;  first2 != last2; ++first1, (void)++first2 )

if(  first1 == last1  )  return true;
else if(  iter out of order(first1, first2)  )  return false;
else if(  iter out of order(first2, first1)  )  return true;

return false;
}

51C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .
C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se r ve d .

There’s More to Comparing
Than Comparing Correctly

“Comparison is the thief of joy.”
― Theodore Roosevelt



Correctly Calculating min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 9

E.g., std::cmp less isn’t always the answer [courtesy R. Seacord]

• Do you see the poten8al security risk in this seemingly-
innocent code?  (Hint: possible buffer overrun!)

• char ∗
char array copy( size t n, char const ∗ a ) // lightly edited

{
char ∗ p  =  n == 0  ?  NULL

:   (char ∗) malloc( n );
if( p != NULL )

for( auto k = 0;  k < n;  ++k )
p[k]  =  ∗a++;

return p;
}

53C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Consider the range 
of possible values of k, 

vis-à-vis the range 
of possible values of n.

Need cmp less(k, n) here, 
but there’s a deeper issue!

Case 1: when sizeof(k) == sizeof(n) [lightly edited]

• “The unsigned n may contain a value greater than
INT MAX [an int’s maximum value]:

! “Assuming quiet wraparound on signed overflow [which 
is a common manifesta_on of this undefined behavior]…

! “Once [the int] k is incremented beyond INT MAX,
k takes on nega_ve values star_ng with (INT MIN). 

! “Consequently, the memory loca_ons referenced 
by p[k] precede the memory referenced by p, and a 
write outside array bounds occurs.”

54C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Case 2: when sizeof(k) < sizeof(n) [lightly edited]

• “For values of n where
(size t)INT MIN  <  n  ≤  SIZE MAX ,

! “k wraps and takes the values
INT MIN

to
INT MIN  +  (n − (size t)INT MIN − 1) .

! “Execu_on of the loop overwrites memory from
p[INT MIN]

through
p[INT MIN  +  (n − (size t)INT MIN − 1)] .”

55C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Advice re comparisons
• Do you have a 100%, iron-clad guarantee that the code 

will never be recompiled:
! With any other compiler/library? Or …

! With any other version of your compiler/library? Or …

! For any other hardware/sogware pla�orm?

• If not, I respecGully but strongly recommend that we 
improve our code’s portability by:
! Avoiding mixed-signedness comparisons.
! Preferring same-type comparisons (and arithme_c, too).

! Planning for same types even before star_ng to code.

56C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

E.g., in the function we last examined …
• … I recommend the code use same-type comparisons:
! char ∗

char array copy( size t n, char const ∗ a )
{

char ∗ p  =  n == 0uz ?  nullptr
:   (char ∗) malloc( n );

if( p != nullptr )
for( size t k = 0uz;  k != n;  ++k )

p[k]  =  ∗a++;
return p;

}

57C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Why?  Same-type!

Why?  Same-type! (C++20)

Why?  Correct post-condition!

When we don’t use same types …

58C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .



Correctly Calculating min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 10

Not an allegory: using same types is important
• “On June 4, 1996 an unmanned Ariane 5 rocket … 

exploded just forty seconds aNer its liN-off….
! “The destroyed rocket and its cargo were valued 

at $500 million…. 

! “It turned out that the cause of the failure was … 
a 64 bit floa8ng point number [that] was converted 
to a 16 bit signed integer.

! “The number was larger than 32,767, the largest 
integer storeable [sic] in a 16 bit signed integer, and 
thus the conversion failed.”

— Douglas N. Arnold

59C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .
C o p y rig h t ©  2 0 2 0 -2 0 2 2  b y  W a lte r  E . B ro w n . A ll  r ig h ts  re se rv e d .

A Bonus Algorithm

“The true delight is in the finding out, 
rather than in the knowing.”

― Isaac Asimov

Sometimes we need both extrema

• We could reuse min and max:
! template< class T >

pair<T const &, T const & >
minmax( T const & a, T const & b )

{
return  { min(a, b), max(a, b) };

}

• But it’s cheaper to make one call to operator < than 
the two made within separate calls to min and to max:
! if(  out of order(a, b)  )  return  { b, a };

else                                   return  { a, b } ;

61C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Finally, let’s consider minmax of a sequence
• Found in the <algorithm> header:
! template< forward iterator Fwd >

pair<Fwd, Fwd>
minmax element( Fwd first, Fwd last );

! We want a pair {m, M}, iterators in [first, last), such that:
• m is the first iterator whose ∗m is smallest, while …
• M is the last iterator whose ∗M is largest.

• Let N denote distance(first, last):
! Separate calls to min then max functions would lead 

to  O(N + N = 2N) calls to out of order.

! But Ira Pohl’s 1972 algorithm needs only O(!
"
N) calls!

62C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

Infrastructure for Ira Pohl’s algorithm
• Given fwd iterators f1, f2 , we’ll use iter versions of:
! precedes(f1, f2), returning ∗f1 < ∗f2

(or returning lt(∗f1 , ∗f2) when there’s a Compare lt).
! out of order(f1, f2), returning precedes(f2, f1) .

! min(f1, f2) / max(f1, f2), each calling out of order(f1, f2) .

• Let mM denote an in order std::pair of iterators, then:
! pair up(f1, f2) makes such an in order mM pair, returning 

out of order(f1, f2)  ?  mM{ f2, f1 }  :  mM{ f1, f2 } .
! meld(p, q) combines two mM pairs into one, returning 

mM{ min(p.first      , q.first     )
, max(p.second, q.second) } .

63C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .

The logic of Pohl’s algorithm [C++20]
• Of 11 lines, 5 initialize and 4 terminate the algorithm:
! using  mM  =  std::pair<Fwd, Fwd>;   // in order(first, second)

! Fwd  prev  =  first;
if( prev == last or  ++first == last ) // empty? singleton?

return mM{prev, prev};

! for( mM  so far = pair up(prev, first);  ;  )    // form initial pair
if( ++first == last ) // nothing more to process?

return so far;
else if( prev = first; ++first == last ) // final singleton?

return meld( so far, mM{prev, prev} );
else // general case: meld result so far w/ current new pair

so far = meld( so far, pair up(prev, first) );

64C opyrigh t ©  2020-2022  by  W a lte r E . B row n .  A ll righ ts  rese rved .



Correctly CalculaEng min, max, and More... 2022-03-31

Copyright © 2020-2022 by Walter E. Brown.  
All rights reserved. 11

Correctly Calculating 

min, max, and More

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Copyright © 2020-2022 by Walter E. Brown. All rights reserved.

FIN


