Correctly Calculating min, max, and More...

Correctly Calculating

,max, and More

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Emeritus participant in C++ standardization

Written ~175 papers for WG21, proposing such
now-standard C++ library features as gcd/lcm,
cbegin/cend, common type, and void t, as well
as all of headers <random> and <ratio>.
Influenced such core language features as alias templates,
contextual conversions, and variable templates; recently
worked on requires-expressions, operator<=>, and more!
Conceived and served as Project Editor for Int’l Standard
on Mathematical Special Functions in C++ (ISO/IEC 29124),
now incorporated into <cmath>.
« Be forewarned: Based on my training and experience, h
I hold some rather strong opinions about computer software
and programming methodology — these opinions are not
shared by all programmers, but they should be! ©

About this talk

e The C++ standard library long ago selected operator <
as its ordering primitive, and even spells it in several
different ways (e.g., std::less).

Today, we will first illustrate why operator < must be
u ith care, in even seemingly simple algorithms
such as max and min.

Then we will discuss the use of operator < in other
order-related algorithms, showing how easy it is to
make mistakes when using the operator < primitive
directly, no matter how it’s spelled.

Along the way, we will also present a straightforward
technique to help us avoid such mistakes.

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

A little about me

e B.A. (math’s); M.S., Ph.D. (computer science).

Professional programmer for over 50 years,

programming in C++ since 1982.

Experienced in industry, academia, consulting,

and research:
Founded a Computer Science Dept.; served as Professor
and Dept. Head; taught and mentored at all levels.
Managed and mentored the programming staff for a reseller.
Lectured internationally as a software consultant and
commercial trainer.
Retired from the Scientific Computing Division at Fermilab,
specializing in C++ programming and in-house consulting.

Not dead — still doing training & consulting. (Email me!)

The Big Picture

“The study of error ...
serves as a stimulating introduction
to the study of truth.”

— Walter Lippmann

“One of the amazing things which we ...
discover is that ordering is very important.

Things which we could do with ordering
cannot be effectively done just with equality.”

— Alexander Stepanov
(né AnekcdHdp CmendHos)

Correctly Calculating min, max, and More...

Lilies of the Field
5 0 GE

The Descendants

The Great Debaters

The Taking of Pelham 123
1h ae 0 GE

An intuitive approach @
e As function-like macros in the C style:
= #tdefine MIN (a, b) ((a) < (b)?(a): (b))
= #tdefine MAX(a, b) ((b)<(a)?(a): (b))
e Repackaged, now as functions (with one overload/type):
= intmin (inta,intb) { returna<b?a:b; }
= intmax(inta,intb) { returnb<a?a:b; }
e Lifted, now as simple (C++20) function templates:
= auto min (auto a,autob) { returna<b?a:b; }

= auto max(autoa,autob) { returnb<a?a:b; }

The cures are mostly straightforward
Per the std library’s specification:

v Enforce consistent types via a named type parameter.
v Avoid expensive copies via call/return by ref-to-const.
After these adjustments we have:

= template< class T >
T const &

min(T const & a, Tconst& b) {returna<b?a:b;}
= And analogously for max.
e (But pls recall that Ivalue ref’s to rvalues can be subtle):
v auto z = min(x.calc(), y.calc()); // copies a temporary

auto & r = min(x.calc(), y.calc()); //dangling reference!

13

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

Early Adventures
with min and max

“Life is trying things to see if they work.”
— Ray Bradbury

An intuitive approach @
e But those C++ templates ...
= auto min (autoa,autob) { returna<b?a:b; }
= auto max (autoa,autob) { returnb<a?a:b; }
... have a few issues:

X The by-value parameter passage is potentially expensive
(e.g., for large string arg’s).

X When the arguments have distinct types, it’s unclear what
the return type should be. (Can we even compare such arg’s
generically? E.g., consider signed vs. unsigned [forthcoming!])

X Major concern: are the algorithms correct for all values?

So What’s

“[N]ever feel badly about making mistakes ...
as long as you ... learn from them.”

— Norton Juster

Correctly Calculating min, max, and More...

Alas, none of the code I've shown so far is quite right!

= template< class T >
T const &
min (T const&a, Tconst&b) {returna<b?a

= template< class T >
T const &
max(Tconst&a, Tconst&b) {returnb<a?a :@ }

¢ Did you notice that each returns@when a=
hould max and min of the same two a
€ give the same result?
= Yet the C++ standard library does this.
(“It took Stepanov 15 years to get min and max right.”)

Alex. Stepanov speaks candidly of his mistake

S5¢ithaspeitn
coulis one be?
C++ stands, my

ApghyREniThgaY.
Spe IU% es
_P@Efw 0
thererabestingt,
i weitigdpie
in the most
will FeRERBer
generic way,
and then he
because that’s

\%/hntes max and
emaxin the

RS RITIR

How Do We Address This?

“[O]nly wise men learn from their mistakes.”
— Winston Churchill

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

To be specific, ...

= “[At] CppCon 2014, Committee member Walter Brown
mentioned that [std::] max returns the wrong value
[when] both arguments have an equal value. ...

= “Why should it matter which value is returned?”
e Many programmers have made similar observations:
1. That equal values are indistinguishable, so ...
2. It ought not matter which is returned, so ...
3. This is an uninteresting case, not worth discussing.

e Alas, for min and max (and related) algorithms, such
opinions are superficial and incorrect!

Many types do distinguish equal values
e Bare-bones example:
= struct student {
string name; int id;
inline static int registrar = O;
S(string n): name{ n}, id{ registrar++} { } //c’tor
bool
operator < (student s)
{return name < s.name;} // id is not salient
)i
e Since each student variable has a unique id number:
= Even equal values are distinguishable, so ...

= It can matter greatly which one is returned by min/max!

A mathematics perspective

e A monotonically increasing sequence is sorted:
= But not conversely!

= Counterexample: a sequence of identical values is
sorted, but is certainly not monotonically increasing.

e Instead, we must say:

= That a sequence is sorted iff it is non-decreasing.

= This allows us to have equal items in a sorted sequence.
e C++ embraces this viewpoint (see [alg.sorting.general]/5):

= A seq. is sorted if, for every iterator i and non-negative
integer n, x(i + n) < *i is false [i.e., not out of order].

Correctly Calculating min, max, and More...

An important insight

= Unless we find a reason to the contr.
= min should a,and ...

= max should b.

= When values a and b are in order,
min should return a / max should return b; an

= When values a and b are out of order,
min should return b / max should return a.

Therefore, | recommend ...
e For min:

= - { returnfo oforder[a, b) ? b :a;} /inorder?a:b

”

e For max: i “Is there a reason to do otherwis
= - { return out of order(a,b) ? a : b; } //inorder?b:a
e Where:

= inline bool
out of order(- x,-y) { returny < x; } /1

= inline bool
inorder(-+ x, ==+ y) { return not out of order(x, y); }

= (FWIW, | find out of order to be the more useful.)

Analogous logic also applies elsewhere @
e template<class T >
T const & //since C++17
clamp(T const & v, T const & lo, T const & hi)
{ // precondition: in order(lo, hi)
return out of order(lo, v) ? lo
: out of order(v, hi) ? hi
} 2 ‘ “Prefer to return the supplied value v;
need a reason to return either lo or hi.”
e Contrast with this body, taken from a very recent blog:

= {return|(v>1lo0)|?lo: (hi<v)?hi:v;} //isthiscorrect?

= This is an error (since corrected!) that commonly arises
when comparisons are inconsistent.

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

Even more succinctly stated

e We should always prefer algorithmic stability ...
= ... especially when it costs nothing to provide it!

¢ Recall what we mean by stability:
= An algorithm dealing with items’ order is stable ...
= |f it keeps the original order of equal items.

® |.e., a stable algorithm ensures that:
= For all pairs of equal items a and b, ...

= Whenever a preceded b in its inp

These Ideas Are Broadly Applicable

“A theory is the more impressive the greater
the simplicity of its premises ... and the more
extended its area of applicability.”

— Albert Einstein

Analogous logic also applies elsewhere @
e template< input iterator In, output iterator<in> Out >
Out merge(/In b1, In el| // 1% sorted input sequence
In b2, In e2| // 2" sorted input sequence

,0ut to) { // merged destination

for(; ; ++to)
(b2 ==e2) return copy(b1, el, to)}

PAREE PRSI
: xb1l++4; ‘

“Prefer to take from the 1%t sequence;
need a reason to take from the 2nd.”

Correctly Calculating min, max, and More...

Analogous logic also applies elsewhere ®
e template< swappable T >
void sort2(T&a, T&b) {

if(out of order(a, b)) (" if(inorder(a, b)) return;
swap(a, b); swap(a, b);
} //postcondition: inorder(a,b)
e template< swappable T> //C++20
void sort3(T&a, T&b, T&c) {
if(sort2(a, b); in order(b, c)) return;
if(swap(b, c); in order(a, b)) return;
swap(a, b);

}
= (BTW, did you recognize bubble sort?)

Our main takeaways so far

| Byitself, operator < is not sufficient
to decide whether
its operands are in order.

By itself, operator < is sufficient
to decide only whether
| its reversed operands are out of order. |

Many std algorithms don’t use operator < per se

e Standard library algorithms often specify an overload
with an extra parameter, comp, such that:
= comp(x, y) is called to decide ordering in lieu of x < y.

e Example:

= template< class Fwd >
constexpr Fwd
is_ sorted_until(Fwd first, Fwd last); // uses operator <
= template< class Fwd, class Compare >
constexpr Fwd
is sorted until(Fwd first, Fwd last, Compare comp);
// calls comp in place of operator <

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

Algorithm logic from stackoverflow — is this correct?
e template<class T > }
void sort3(T&a, T&b, T&c) { Algorithm does more
iflfa<b) { work than necessary:
if(b<c) return; operator < is no

’

else if(a<c) swap(b, c); substitute for in order!

else { /xrotate right into orderc, a, b %

1

s

else { Algorithm isn’t stable:
if(a<c) swap(a, b); operator < is no
else if(c<b) swap(a, c); substitute for in order!

else { /xrotate left into order b, ¢, a %/ }

operator«< Is Spelled Other Ways, Too

“Sameness is tiresome; variety is pleasing.”

— Mark Twain

About the is sorted until algorithm

e “Returns: The last iterator i in [first, last] for which the
range [first, i) is sorted.... Complexity: Linear.”
= |e.,iinduces adj. partitions [first, i) and [i, last) where ...

= The former is known to be sorted and of maximal length.

e Equivalently (but better for algorithmic thinking), without i :

= Treat [---, first) as a partition that’s known to be sorted,
with an adjoining partition [first, last) in unknown order.

= |teratively advance first so long as *first is in sorted order
with respect to its immediate predecessor (say, *prev).

= By construction, sorted partition [---, first) has maximal
length, so we return first (for even empty or singleton ranges).

Correctly Calculating min, max, and More...

My earliest operator < implementation [edited for exposition]

e template< class Fwd > // forward iterator
constexpr Fwd
is_sorted until(Fwd first, Fwd last)

[
1

if(first != last)
init/reinit loop as if by prev = first++ :
Fwd prev st ast; prev rst)
if(*first < xprev) //inorder? out of order?
break;)
return first; (Tip: prefer pre-increment;
} need a reason to use post-increment.
(Ditto for pre- vs post-decrement.)

lg.sorting.general]/2- rearranged

e “[The declaration] Compare comp is used throughout
[as a parameter that denotes] an ordering relation.”

= “Compare is a function object type [whose] call
operation ... yields true if the first argument of the call
is less than the second, and false otherwise.”

= “.. comp [induces] a strict weak ordering on the values.”

= “For all algorithms that take Compare, there is a version
that uses operator < instead.”

* IMO, the names comp and Compare are too general:

= I'd prefer, e.g., s/comp/less than/ or s/comp/It/ or
s/comp/precedes/ or s/comp/before/.

Or we can avoid overloading ...
e .. via a single template that has judicious default arg’s:

= template< class Fwd, class Compare = std::ranges::less >
constexpr Fwd
is sorted until(Fwd first, Fwd last, Compare It = {})

// unchanged
s

e Q1: What, exactly, is std::ranges::less?

* Q2: Do we need both a default function argument and

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

refer and recommend ...
e .. to use a named order predicate.

e template< class Fwd >
constexpr Fwd
is_ sorted until(Fwd first, Fwd last)
{
#define outof order(x,y) (*(y) < *(x))
It(first 1= last)
for(Fwd prev = first; ++first !=last; prev = first)
if(out of order(prey, first))
break; Ve

return first; (which are typically cheap to copy)

rather than the dereferenced

Even when we have an explicit less-than predicate ...
e ... I still recommend adapting it via an order predicate.

e template< class Fwd, class Compare >
constexpr Fwd
is_ sorted until(Fwd first, Fwd last, Compare precedes)
{
auto iter out of order //could be named indirect out of order
= [=] (Fwd x, Fwdy) {return precedes(*y, *x); };
if(first !=last)
for(Fwd prev = first; ++first !=last; prev = first)
if(iter out of order(prey, first))
break;
return first;

}

1: What's std::ranges::less?
e It’s a class declared in <functional>:

= struct less { // simplified for exposition
template< class T, class U >
constexpr bool
operator () (T &&t, U && u) const
{ return t<u; } // note: heterogeneous comparison

Iy

= Avariable of type less is a function object, as it’s callable
via its operator () member template.

e (There’s also std::less, a template whose operator ()

Correctly Calculating min, max, and More...

2: Do algorithms need both default argument kinds?
e Let’s review the algorithm’s decl., then consider a call:
= template< class Fwd, class Compare = std::ranges::less >

constexpr Fwd

is_ sorted until(Fwd first, Fwd last, Compare It={});
" int a[N] = {-}
-+ is_sorted_until(// what type is Fwd?

= Fwd is inferred as int *. Now: what type is Compare?

= Enables calling code to default-construct a 3 argument,
in this case std::ranges::less{ }.

std Disguises for operator«<

“Everybody's wearing a disguise....”

— Bob Dylan

My version of std::ranges::less [edited for exposition]
e struct less
{

template< class L, class R >
constexpr bool
operator() (L && left, R && right) const noexcept(:--)

if constexpr(are std integer types<L, R>)
return cmp less(left, right); // forthcoming

else if constexpr(are std arithmetic types<L, R>)
return isless(left, right); // forthcoming

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

n't the std library u h default arg’s?
¢ In brief, because it’s prohibited (unless thusly specified):

= “An implementation shall not declare a non-member
function signature with additional default arguments.”
(See [global.functions]/3.)

e Why not consolidate? Because doing so is problematic:

= “The difference between two overloaded functions and
one function with a default argument can be observed

by taking a pointer to function.” (See N1070, 1997.)

= Further, consider a call supplying a type but not a value:
template<class T=int> voidg(Tx={}) {---}

g<MyType>(); // what if MyType isn’t default-constructible?

How many ways can std design and spell operator < ?
Name Where found Arg. types

class template

less <functional> C++98 T, T

specialization

i ++
T ——. <functional> C++14 T, U

class

ranges::less <functional> C+20 T, U

function template

A 5
cmp_less <utility> (why?) C++20

overload set

isless <cmath> C++11

IEEE 754; in spec of 2008:

<compare>’s
strong-order C++20

specification
totalOrder

My version of std::cmp less [edited for exposition]
e template< std integer type L, std integer type R >
constexpr bool
cmp_less(L left, R right) noexcept
{
if constexpr(same signedness types<L, R>)
return left < right; //safely converts lesser to greater rank

else // mixed signedness
if constexpr(signed type<L>) //and unsigned type<R>
return left < 0 ? true : as unsigned(left) < right;

Correctly Calculating min, max, and More...

My version of std::isless [edited for exposition]
¢ template< std arithmetic type L, std arithmetic type R >
constexpr bool
isless(L left, R right) noexcept // not an overload set
{
using flt = common floating point t<L, R>;
flt x = left
, Yy = right;
return isunordered(x, y) ? false // avoid FE_INVALID
X <y;

Now consider IEEE’s floating-point layout in that light
¢ Relative to trad. scientific notation +d.d... x 10*
IEEE decomposes/rebases/reorders/adjusts its parts:

What if we treated

Sign Exponent Mantssa these bits as a
32|64]128-bit int?

—1B— ——BBs— —BBs——>

Exponent Mantissa

11Bits

raphical compare!

e template<inputiterator Inl, input iterator In2 >
constexpr bool
lexicographical compare(Inl firstl, In1 lastl
, In2 first2, In2 last2

)

for(; first2 I=last2; ++firstl, (void)++first2)
if(firstl ==lastl) return true;
else if(iter out of order(firstl, first2)) return false;
else if(iter out of order(first2, firstl)) return true;

return false;

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

The ordering specified by IEEE’s totalOrder predicate
e Most- to least-negative, then least- to most-positive.

e |.e., first all negative values, in the following order:

= All negative quiet NaNs, then all negative signaling NaNs,
each ordered per their payload bits.

= Then negative infinity, then all negative normalized and
denormal numbers in value order, then negative zero.

e Then all positive values, in the opposite order:

= Positive zero, then all positive denormal and normalized
numbers in value order, then positive infinity.

= All positive signaling NaNs, then all positive quiet NaNs,
each ordered per their payload bits.

My version of IEEE’s totalOrder [edited for exposition]
¢ template< floating point type F > // assumes IEEE rep’s
constexpr bool
total order(F left, F right) noexcept // 2008-2018 signature
{
if(signbit(left) != signbit(right)) //one is negative, one is not
return signbit(left);
else { //same signs
using intt = big enough type< sizeof(F)
, int32t,int64 t, int128 t >;
intt x = bit cast<intt>(left)
, Yy = bitcast<int t >(right);
return signbit(x) ? in order(y, x) // both are negative
in order(x,y); //neither is negative

There’s More to Comparing
Than Comparing Correctly

“Comparison is the thief of joy.”

— Theodore Roosevelt

Correctly Calculating min, max, and More... 2022-03-31

E.g., std::cmp less isn't always the answer [courtesy R. Seacord
¢ Do you see the potential in this seemingly-

e “The unsigned n may contain a value greater than
innocent code? (Hint: possible buffer overrun!)

INT_MAX [an int’s maximum value]:
char *

.)) = “Assuming quiet wraparound on signed overflow [which
char array copy(size t n, char const * a) // lightly edited

. is a common manifestation of this undefined behavior]...
1

char* p = n==0 ? NULL = “Once [the int] k is incremented beyond INT MAX,
(char *) malloc(n); k takes on negative values starting with (INT MIN).
if(p !=NULL)
for(auto k=0
plk] = *a++;
return p;

= “Consequently, the memory locations referenced
oAbl R R A PR A by p[k] precede the memory referenced by p, and a
Consider the range write outside array bounds occurs.”
of possible values of k,
vis-a-vis the range
of possible values of n.

2: when sizeof(k) < sizeof(n lightly edited Advice re comparison
e “For values of n where * Do you have a 100%, iron-clad guarantee that the code
(size_t)INT_MIN < n < SIZE MAX,
“k wraps and takes the values = With any other compiler/library? Or ...

INT_MIN = With any other version of your compiler/library? Or ...

Lo . = For any other hardware/software platform?
INTMIN + (n - (size t)INT MIN - 1

M . ’ e If not, | respectfully but strongly recommend that we
Execution of the loop overwrites memory from

P[INT MIN] improve our code’s portability by:
through = Avoiding mixed-signedness comparisons.
PIINT,MIN + (n - (size t)INT MIN - 1)] = Preferring same-type comparisons (and arithmetic, too).

= Planning for same types even before starting to code.

e ...l recommend the code use

= char *
char array copy(size t n, char const x a)

E.qg., in the function we last examined ... When we don’t use same types ... ‘

[
1

char* p = n:: ? nullptr
: (char *) malloc(n);
k@n; ++k)
- : ? o |
R (2 Why? Same-type!
Why? Same-type! (C++20)
Why? Correct post-condition!

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 9

Correctly Calculating min, max, and More...

Not an allegory: using same types is important
® “On June 4, 1996 an unmanned Ariane 5 roc
exploded just forty seconds after its lift-off....

= “The destroyed rocket and its cargo were valued
at $500 million....

= “It turned out that the cause of the failure was ...
a 64 bit floating point number [that] was converted
to a 16 bit signed integer.

= “The number was larger than 32,767, the largest
integer storeable [sic] in a 16 bit signed integer, and

thus the conversion failed.”
— Douglas N. Arnold

e We could reuse min and max:

= template< class T >
pair<T const &, T const & >
minmax(T const & a, T const & b)

{
return { min(a, b), max(a, b) };

1
I

the two made within separate calls tofin'and to max:

=(if(out of order(a, b)) return {b,a};
else return {a,b};

Infrastructure for Ira Pohl’s algorithm

e Given fwd iterators f1, f2 , we’ll use iter versions of:

= precedes(fl, f2), returning *f1 < *f2
(or returning It(xf1, *f2) when there’s a Compare It).

= out of order(f1, f2), returning precedes(f2, f1) .
= min(f1, f2) / max(f1, f2), each calling out of order(f1, f2) .
e Let mM denote an in order std::pair of iterators, then:

= pair up(fl, f2) makes such an in order mM pair, returning
out of order(f1, f2) ? mM{f2,f1} : mM{f1,f2}.
= meld(p, g) combines two mM pairs into one, returning
mM{ min(p.first , g.first)
, max(p.second, q.second) }.

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved.

2022-03-31

A Bonus Algorithm

“The true delight is in the finding out,
rather than in the knowing.”
— Isaac Asimov

e Found in the <algorithm> header:

= template< forward iterator Fwd >
pair<Fwd, Fwd>
minmax element(Fwd first, Fwd last);

Finally, let's consider minmax of a sequence ‘

= We want a pair {m, M}, iterators in [first, last), such that:
e mis the first iterator whose *m is smallest, while ...
iterator whose *M is largest.

e Let N denote distance(first, last):

= Separate calls to min then max functions would lead
to O(N + N =2N) calls to out of order.

= But Ira Pohl’s 1972 algorithm needs only O(-jN) calls!

The logic of Pohl’s algorithm [C++20]

e Of 11 lines, 5 initialize and 4 terminate the algorithm:
= using mM = std::pair<Fwd, Fwd>; //in order(first, second)

= Fwd prev = first;
if(prev == last or ++first == last) // empty? singleton?
return mM{prev, prev};

= for(mM so_far = pair up(prey, first); ;) //form initial pair
if(++first == last) // nothing more to process?
return so far;
else if(prev = first; ++first == last) // final singleton?
return meld(so far, mM{prev, prev});
else // general case: meld result so far w/ current new pair
so_far = meld(so far, pair up(prey, first));

10

Correctly Calculating min, max, and More... 2022-03-31

Correctly Calculating

min, max, and More

Walter E. Brown, Ph.D.

< webrown.cpp @ gmail.com >

Copyright © 2020-2022 by Walter E. Brown.
All rights reserved. 11

