Dockerized Build Environments for
G/C++ Projects

Dima Danilov

Dockerized Build Environments for C/C++ @Dima Danilov

Who Am |?

SENIOR SOFTWARE ENGINEER

GKS8 - blockchain and digital asset security
VMWare - blockchain development
LiveU - HD live video streaming

TECHNOLOGIES

C++, Rust, Python, Network programming,
Distributed systems

HOBBIES

Vim/Neovim fine-tuning

Dockerized Build Environments for C/C++ @Dima Danilov

Common Problems when Building C/C++ Projects

Py

e No standard dependency management ®
o OS package managers l
o Manually build/install libraries as “make install” Ly
o Git submodules and build within a source tree
o Conan, Hunter, Build2, etc
e Tool management ” '
o Which compiler version is necessary?
o Which linker should be used? tu
e Differences between the CI and dev station environments
o Dependencies are not updated automatically
o Dirty local environment ‘

o Constant “works on my machine” excuses

Dockerized Build Environments for C/C++ @Dima Danilov

Single
Isolated :

Single — one environment used by

R e p rO d u C i b I e both CI and dev stations

Isolated - no influence from local

B u i I d En"i rO n m e nt packages, applications, etc

Reproducible - build consistency
across versions

Dockerized Build Environments for C/C++ @Dima Danilov

What is Docker?

Docker is a set of products that use OS-level virtualization to deliver software in
packages called containers.

e Software inside a container runs on the host Linux kernel

e The processes are isolated by utilization of kernel features as follows:
o Control groups (allows limiting an application to a specific set of hardware resources)

o Namespaces:
m The pid namespace: Process isolation (PID: Process ID).
m The net namespace: Managing network interfaces (NET: Networking).
m The ipc namespace: Managing access to IPC resources (IPC: InterProcess Communication).
m The mnt namespace: Managing filesystem mount points (MNT: Mount).
m The uts namespace: Isolating kernel and version identifiers. (UTS: Unix Timesharing System).

o OverlayFS/UnionFS (file systems that operate by creating layers, making them very lightweight and
fast)

Dockerized Build Environments for C/C++ @Dima Danilov

Docker Image

Contains different layers, which are all
read-only. Every layer has an ID and can
contain “parent IDs” of underlying images.

Every new layer is on top of the older layers
and can “overwrite” files of the lower layers.

Every command in the Dockerfile definition
will create a new layer image.

Can be shared between containers

ID: aedf321345
Parent: 3fa76543
Name: apache: 1.0.0

ID: 3fa76543
Parent: 2aef76987

ID: 2aef76987
Parent: 1fead8768
N il

ID: 1fead8768
Parent: /

Docker container

Uses images as read-only file system
Has a small writable runtime file system
Runs on hosts kernel instance

Isolated namespace

bins/libs bins/libs bins/libs

Container Engine

Operating System

Infrastructure

Containers

Dockerized Build Environments for C/C++ @Dima Danilov

Example Application: Code

Simple application with one 3rd party library

int main(int argc, char *argv[]) {

std::cout << "The size of " << boost::filesystem::absolute(argv[©])

<< " is " << boost::filesystem::file_size(argv[@]) << '\n’;

return 0;

Dockerized Build Environments for C/C++ @Dima Danilov

Example Application: CMake

Boost is linked statically since it is required if the
target machine does not have the right version of
Boost pre-installed; this recommendation applies
to all dependencies pre-installed in the docker
image.

cmake_minimum_required(VERSION 3.10.2)

project(a.out)

set (CMAKE_CXX_STANDARD 17)

set (CMAKE_CXX_STANDARD_REQUIRED ON)

set (CMAKE_CXX_EXTENSIONS OFF)

string(APPEND CMAKE_CXX_FLAGS " -Wall")

string(APPEND CMAKE_CXX_FLAGS " -Wbuiltin-macro-redefined")

string(APPEND CMAKE_CXX_FLAGS " -pedantic")
string(APPEND CMAKE_CXX_FLAGS " -Werror")

set (CMAKE_EXPORT_COMPILE_COMMANDS ON)

include_directories(${CMAKE_SOURCE_DIR})
file(GLOB SOURCES "${CMAKE_ SOURCE_DIR}/*.cpp")

add_executable(${PROJECT_NAME} ${SOURCES})
set(Boost_USE_STATIC_LIBS ON)
set(Boost_USE_MULTITHREADED ON)
set(Boost_USE_STATIC_RUNTIME OFF)
find_package(Boost REQUIRED COMPONENTS filesystem)
target_link_libraries(${PROJECT_NAME}

Boost::filesystem

)

Dockerized Build Environments for C/C++ @Dima Danilov

Prepare and Build a Docker Image

FROM ubuntu:18.04
LABEL Description="Build environment"

ENV HOME /root

SHELL ["/bin/bash", "-c"]

RUN apt-get update && apt-get -y --no-install-recommends install \ Y The image is based on Ubuntu 1804 LTS

build-essential \

clang \ e Contains a minimum set of tools for building

cmake \

Sl a C++ project

wget

e Boost is used as a dependency for our

cd $S{HOME} && \
wget --no-check-certificate --quiet \
https://boostorg.jfrog.io/artifactory/main/release/1.77.0/source/boost_1
tar xzf ./boost_1_77_0.tar.gz && \
cd ./boost_1 77_0 && \
./bootstrap.sh && \
./b2 install && \
cd .. & \
rm -rf ./boost_1_77_0

example application

Dockerized Build Environments for C/C++ @Dima Danilov

Build the Docker Image and Project Inside

$ docker build -t example/example_build:0.1 -f DockerfileBuildEnv .

Here is supposed to be a long output of boost build

e -t -image name and version
e -f -<path to Dockerfile>
e . - path to the context

$ cd project
$ docker run -it --rm --name=example \
--mount type=bind, source=${PWD}, target=/src \

example/example_build:0.1 \
bash

e —- mount - instructs Docker to mount the current source directory to the container

Dockerized Build Environments for C/C++ @Dima Danilov

Make the Environment
Re-usable

e Docker commands are hard to remember

e The idea is to wrap the docker commands in
a Makefile

e Make is a tool that most usable tool by C/C++
developers

Integrate Makefile into an Existing Project

I have created a template of a Makefile working with docker.
More about its usage can be found in my blog post.

Dockerized Build Environments for C/C++ @Dima Danilov

https://github.com/f-squirrel/dockerized_cpp
https://ddanilov.me/dockerized-cpp-build

Advanced features

e Most modern IDE/text editors support docker build
o Clion
o Visual Studio Code

e Run tests in docker

Dockerized Build Environments for C/C++ @Dima Danilov

https://blog.jetbrains.com/clion/2020/01/using-docker-with-clion/
https://code.visualstudio.com/docs/remote/containers#:~:text=The%20Visual%20Studio%20Code%20Remote,Studio%20Code's%20full%20feature%20set.

Resources

Example Makefile
Example of using the Makefile

ddanilov.me (my blog and the source for this presentation)
Github

Dockerized Build Environments for C/C++ @Dima Danilov

https://github.com/f-squirrel/dockerized_cpp
https://github.com/f-squirrel/dockerized_cpp_build_example
https://ddanilov.me/
https://github.com/f-squirrel

Thank you for listening!

Dockerized Build Environments for C/C++ @Dima Danilov

