
Dockerized Build Environments for C/C++ @Dima Danilov

Dockerized Build Environments for
C/C++ Projects

Dima Danilov

Dockerized Build Environments for C/C++ @Dima DanilovDockerized Build Environments for C/C++ @Dima Danilov

Who Am I?
SENIOR SOFTWARE ENGINEER

GK8 - blockchain and digital asset security

VMWare - blockchain development

LiveU - HD live video streaming

TECHNOLOGIES

C++, Rust, Python, Network programming,

Distributed systems

HOBBIES

Vim/Neovim fine-tuning

Dockerized Build Environments for C/C++ @Dima Danilov

Common Problems when Building C/C++ Projects
● No standard dependency management

○ OS package managers

○ Manually build/install libraries as “make install”

○ Git submodules and build within a source tree

○ Conan, Hunter, Build2, etc

● Tool management

○ Which compiler version is necessary?

○ Which linker should be used?

● Differences between the CI and dev station environments

○ Dependencies are not updated automatically

○ Dirty local environment

○ Constant “works on my machine” excuses

Dockerized Build Environments for C/C++ @Dima DanilovDockerized Build Environments for C/C++ @Dima Danilov

Single
Isolated

Reproducible
Build Environment

● Single – one environment used by

both CI and dev stations

● Isolated - no influence from local

packages, applications, etc

● Reproducible - build consistency

across versions

Dockerized Build Environments for C/C++ @Dima Danilov

What is Docker?
Docker is a set of products that use OS-level virtualization to deliver software in

packages called containers.

● Software inside a container runs on the host Linux kernel

● The processes are isolated by utilization of kernel features as follows:

○ Control groups (allows limiting an application to a specific set of hardware resources)

○ Namespaces:

■ The pid namespace: Process isolation (PID: Process ID).

■ The net namespace: Managing network interfaces (NET: Networking).

■ The ipc namespace: Managing access to IPC resources (IPC: InterProcess Communication).

■ The mnt namespace: Managing filesystem mount points (MNT: Mount).

■ The uts namespace: Isolating kernel and version identifiers. (UTS: Unix Timesharing System).

○ OverlayFS/UnionFS (file systems that operate by creating layers, making them very lightweight and

fast)

Dockerized Build Environments for C/C++ @Dima DanilovDockerized Build Environments for C/C++ @Dima Danilov

Docker Image
● Contains different layers, which are all

read-only. Every layer has an ID and can

contain “parent IDs” of underlying images.

● Every new layer is on top of the older layers

and can “overwrite” files of the lower layers.

● Every command in the Dockerfile definition

will create a new layer image.

● Can be shared between containers

Dockerized Build Environments for C/C++ @Dima DanilovDockerized Build Environments for C/C++ @Dima Danilov

Docker container

● Uses images as read-only file system

● Has a small writable runtime file system

● Runs on hosts kernel instance

● Isolated namespace

Dockerized Build Environments for C/C++ @Dima Danilov

Example Application: Code
Simple application with one 3rd party library

Dockerized Build Environments for C/C++ @Dima Danilov

Example Application: CMake

Boost is linked statically since it is required if the

target machine does not have the right version of

Boost pre-installed; this recommendation applies

to all dependencies pre-installed in the docker

image.

Dockerized Build Environments for C/C++ @Dima Danilov

Prepare and Build a Docker Image

● The image is based on Ubuntu 18.04 LTS

● Contains a minimum set of tools for building

a C++ project

● Boost is used as a dependency for our

example application

Dockerized Build Environments for C/C++ @Dima Danilov

Build the Docker Image and Project Inside

● -t - image name and version

● -f - <path to Dockerfile>

● . - path to the context

● -- mount - instructs Docker to mount the current source directory to the container

Dockerized Build Environments for C/C++ @Dima DanilovDockerized Build Environments for C/C++ @Dima Danilov

Make the Environment
Re-usable

● Docker commands are hard to remember

● The idea is to wrap the docker commands in

a Makefile

● Make is a tool that most usable tool by C/C++

developers

Dockerized Build Environments for C/C++ @Dima Danilov

Integrate Makefile into an Existing Project
I have created a template of a Makefile working with docker.

More about its usage can be found in my blog post.

https://github.com/f-squirrel/dockerized_cpp
https://ddanilov.me/dockerized-cpp-build

Dockerized Build Environments for C/C++ @Dima Danilov

Advanced features
● Most modern IDE/text editors support docker build

○ CLion

○ Visual Studio Code

● Run tests in docker

https://blog.jetbrains.com/clion/2020/01/using-docker-with-clion/
https://code.visualstudio.com/docs/remote/containers#:~:text=The%20Visual%20Studio%20Code%20Remote,Studio%20Code's%20full%20feature%20set.

Dockerized Build Environments for C/C++ @Dima Danilov

Resources
● Example Makefile

● Example of using the Makefile

● ddanilov.me (my blog and the source for this presentation)

● Github

https://github.com/f-squirrel/dockerized_cpp
https://github.com/f-squirrel/dockerized_cpp_build_example
https://ddanilov.me/
https://github.com/f-squirrel

Dockerized Build Environments for C/C++ @Dima Danilov

Thank you for listening!

