
Generic pathfinding
boost::graph for dummies

No raw loops

• If you have a loop in the middle of a function
• It probably shouldn’t be there

• STL provides many commonly used algorithms

• Algorithms often work with iterators.
• STL provides many one dimension containers with begin and end

• Pointer is also an iterator

Graphs

• A set of vertices (nodes, locations, junctions)

• A set edges (connections, links) each is a pairs of members of first set

• There are many ways to define sets in code

• Edges and vertices may have properties

Graphs - grid

Pathfinding

• Find best path from point to
• Another point

• All points within given range

• A set of well known algorithms
• BFS, Dijkstra, A*

• Can be applied to (almost) any graph
• And even infinite graph-like structure

There is no A* in STL

• Let’s Google generic pathfinding in C++
• We have boost::graph (since boost 1.18!)

• Does boost::astar_search really have 11 parameters? ;)
• Let’s decipher it

This won’t be easy

The input

• Begin vertex

• End vertex or some other termination condition (optional)
• For example we want to see all spots reachable within fixed time

• Perhaps we want to find path to 5 different spots, in the same general
direction

• Anyway it is vastly different from begin and end of array

• Way to get a list of points adjacent to a given point

The input

• The full list of vertices may be available in advance or generated
dynamically

• Travel cost from point to adjacent point (weight)
• The generic way to represent it should be some kind of callable

• For BFS it is constant

• For A* estimated cost from point to end

The output

• The simplest exercise case is just the distance between two points.

• More practical case is distance and path.
• The topology of output is the same as input!

The Dijkstra algorithm

W
F

M

T
5

1 10

2

??????

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

T

F

M

0

Inf

Inf

Inf

Priority Node

0 W

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

T

F

M

0

Inf

Inf

Inf

Priority Node

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

W

F

W

0

5

Inf

1

Priority Node

1 M

5 T

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

W

F

W

0

5

Inf

1

Priority Node

5 T

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

W

M

W

0

5

11

1

Priority Node

5 T

11 F

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

W

M

W

0

5

11

1

Priority Node

5 T

11 F

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

W

T

W

0

5

7

1

Priority Node

7 F

11 F

The Dijkstra algorithm

W
F

M

T
5

1 10

2
W

W

T

W

0

5

7

1

Priority Node

The Dijkstra algorithm outputs

W
F

M

T
5

1 10

2
W

W

T

W

0

5

7

1

Predecessor container

Distance
container

Key points

• It is somewhat similar to std::transform. Input is likely a container and
output is same size as input.

• Unlike std::transform the input is not one dimensional. operator++ is
not enough!

• std::transform at every step of execution knows one variable place in
input container and matching place in output container

Indices vs iterators

• In case of STL’s std::transform if you have two iterators pointing at
matching places doing ++ or advance(X) on both will keep them
matching.

• Pathfinding at every step knows multiple variable locations in original
data structure

Let’s start with simple tasks to test
boost::graph usability
• Given an empty chess board of size NxN

1. Find minimum number of knight moves K to
get from {X1, Y1} to {X2, Y2}
• Should be super easy to implement manually

2. Find a set S of fields reachable from {X, Y}
within M moves
• Not much harder than first

3. Provide list of unreachable squares

Graphs in boost::graph

• Graph is a concept
• A set of valid operations on something used as template argument

• Base graph requires very basic stuff for example mostly typedefs

• Other graphs require supporting more operations
• IncidenceGraph must provide operations for traversing neighbors of vertex

• VertexListGraph must provide number and iterable list of all vertices

Property maps

• Concept of a universal container

• The interface for property maps consists of three functions:
• get()

• put()

• operator[]

• Read only container can be based on calculation, boost provides
some utilities to help for implementing it.

Boost – A*

template <typename VertexListGraph, typename AStarHeuristic,

typename AStarVisitor, typename PredecessorMap,

typename CostMap, typename DistanceMap, typename WeightMap,

typename VertexIndexMap,

typename ColorMap, typename CompareFunction, typename CombineFunction,

typename CostInf, typename CostZero>

inline void

astar_search

(const VertexListGraph &g, typename
graph_traits<VertexListGraph>::vertex_descriptor s,

AStarHeuristic h, AStarVisitor vis, PredecessorMap predecessor, CostMap
cost,

DistanceMap distance, WeightMap weight, VertexIndexMap index_map,
ColorMap color,

CompareFunction compare, CombineFunction combine, CostInf inf, CostZero
zero);

Dijkstra should be simpler

template <typename Graph, typename DijkstraVisitor,

typename PredecessorMap, typename DistanceMap,

typename WeightMap, typename VertexIndexMap,

typename CompareFunction, typename CombineFunction,

typename DistInf, typename DistZero, typename ColorMap =
default>

void dijkstra_shortest_paths

(const Graph& g,

typename graph_traits<Graph>::vertex_descriptor s,

PredecessorMap predecessor, DistanceMap distance,

WeightMap weight, VertexIndexMap index_map,

CompareFunction compare, CombineFunction combine,

DistInf inf, DistZero zero,

DijkstraVisitor vis, ColorMap color = default)

BFS is even simpler

template <class Graph, class Buffer,

class BFSVisitor, class ColorMap>

void breadth_first_search(const Graph& g,

typename graph_traits<Graph>::vertex_descriptor s,

Buffer& Q, BFSVisitor vis, ColorMap color);

Looks too simple to be what we are looking for, just a building block for
Dijkstra and other similar algorithms

OK, let’s decipher Dijkstra arguments

• const Graph& g

• Provides a way (iterator pair) to get the list of neighbours of given vertex.
Defines the actual topology.

• Also full list of vertices in graph

• graph_traits<Graph>::vertex_descriptor s

• Start point for search. There are some overloads with multiple starting
points

OK, let’s decipher Dijkstra arguments

• PredecessorMap predecessor

• Main output. The actual path found. The previous position.

• DistanceMap distance

• Also output. The distance to a given point.

OK, let’s decipher Dijkstra arguments

• WeightMap weight

• Input. The cost to move between adjacent nodes.

• VertexIndexMap index_map

• Translate coordinates to single number. Why is it a must?

• CompareFunction, CombineFunction, DistInf,
DistZero

• I hope there is an overload to provide a good default

OK, let’s decipher Dijkstra arguments

• DijkstraVisitor vis

• Observes the search process.

• ColorMap color = default

• Whether the node was visited, finalized…

Grid 2D

• So we have boost::grid_graph<N> and it can be used for grids like . It
will provide the required functions
• to count vertices

• … and iterate over all vertices

• … and a function to get all adjacent nodes

• … and mapping indices to coordinates, coordinates to indices

• By default adjacency is horizontal and vertical.

• Can we have it use knight’s move adjacency instead of default?
• Because the example on the next slide won’t pass the first unit test

Something that compiles

About boost parameter library

• There is an overload that uses boost parameter library.
• Imitate named function parameters

• Give reasonable default to parameters from the middle of the list

• Did not work for me
• Worked on original grid_graph, but not on subclass

No simple knight’s move
• grid_graph uses transform_iterator

• The transform function is part of the class, not customizable

• The actual code is for orthogonal N dimensional grid and the iteration
logic is part of grid_graph all about supporting any number of
dimensions

• Let’s create our own
• Do something wrong and you get compilation error with so much templates

you will never understand it

Let’s try to extend grid_2d

struct my_grid : public boost::grid_graph<2,

int>

{

my_grid(vertex_descriptor dims) :

boost::grid_graph<2, int>(dims) {}

};

Now what?

• Let’s make it generic so it accepts a list to iterator over valid move
range
• We could use it for hex grid!

• Let’s add iterator the naïve way

Some snippets

Some snippets

template <typename IndexType, class IterType>

struct my_graph : public boost::grid_graph<2,
IndexType>

{
typedef my_graph type;

my_graph(IterType moves_begin, IterType moves_end,

vertex_descriptor dims) :

boost::grid_graph<2, int>(dims), m_dims(dims),

m_moves_begin(moves_begin),

m_moves_end(moves_end) {}

Some snippets

friend inline std::pair<typename type::out_edge_iterator,

typename type::out_edge_iterator>

out_edges(typename type::vertex_descriptor vertex,

const type& graph)

{
return std::make_pair(out_edge_iterator(graph.m_moves_begin,
graph.m_moves_end, graph.m_dims, vertex),

out_edge_iterator(graph.m_moves_end, graph.m_moves_end,
graph.m_dims, vertex));

}

Some snippets

• Incidence graph concept requires this function.

• Dijkstra does not use it

• And we do not want to implement it, but must make sure the one
from grid_graph is not used.

Some snippets
struct out_edge_iterator :

public boost::forward_iterator_helper<out_edge_iterator,

std::pair<vertex_descriptor, vertex_descriptor> >

{

out_edge_iterator() = default;

out_edge_iterator& operator=(const out_edge_iterator& other) = default;

out_edge_iterator(IterType begin, IterType end,

vertex_descriptor dims,

const vertex_descriptor& vertex)

:m_current(begin), m_end(end), m_dims(dims)

{

m_edge.first = vertex;

update_and_skip_out_of_bounds();

}

Some snippets

Let’s add some stuff

• Perhaps we want a way to mark certain cells as unreachable
• Extract coordinate validation function to parameter

• Terminate upon reaching certain distance.

• Perhaps we want a way to mark certain cells as expensive to move
into
• Just use a different weight map

Quick and dirty cell validator

Visitor

• Has methods called on certain events during search. For example:
• vis.discover_vertex(u, g) is invoked the first time the algorithm encounters

vertex u.

• Can serve to collect output
• For example if you need to build a list of locations reachable withi n time X

and another list for locations reachable between X+1 to 2X

Visitor

• Has methods called on certain events during search. For example:
• vis.discover_vertex(u, g) is invoked the first time the algorithm encounters

vertex u.

• Can serve to collect output

• For example if you need to build a list of locations reachable within
time X and another list for locations reachable between X+1 to 2X
• Visitor can ask to be called when path was found and check how the result in

distance map compares to X.

• Either store the vertex in one of two result lists or exit

Let’s look at examples in boost
documentation
struct astar_goal_visitor : public boost::default_astar_visitor
{

astar_goal_visitor(vertex_descriptor goal) : m_goal(goal) {};

void examine_vertex(vertex_descriptor u, const
filtered_grid&)

{
if (u == m_goal)

throw found_goal();
}

private:
vertex_descriptor m_goal;

};

• Holy flipping shine! Does boost documentation actually recommend
using exceptions for normal non-exceptional flow control?

Alternatives

• “LEMON” Graph Library
• Often less annoying syntax

• Different algorithm set
• No A*

• Weird iterators

• LEDA
• Commercial

• Bad documentation

std::graph

• Currently just a proposal.
• Not even close to being approved.

• Defines many concepts boost like.

• No working implementation.

• Based on stronger language (C++20) than BGL (C++98) and should be
easier to use.

BGL - The good

• Every underlying data structure can be adopted to work with BGL
algorithms

• Some parts are implemented in simplest, given inherent problem
complexity, way.

• Implements many different algorithms

• Some algorithms are easy to use

• Header only

BGL - The desired

• The documentation and examples are severely lacking.

• Overloads with less arguments for common needs are missing
• Visitor for search for given node, up to certain distance, binning by distance

range.

• Exceptions as the natural way to implement non exceptional control
flow.

• Lots of minor stuff like IncidenceGraph required to provide a number
of neighbors in advance.

Discussion

• It is easier to learn and use std::sort, than to write own sort for
specific container and type
• It is easier to learn and use std::rotate, than to write your own rotate for

specific type

• For some problems like topological sort on adjacency list BGL is not
harder to use, as to write your own.

• It is much easier to write your own specific case pathfinding than to
learn and use the implementation by BGL

• std::graph authors should think twice about tradeoff between
genericity and easy of use.

Recommended reading/watching

• Sean Parent – basically everything
• No raw loops

• No incidental data structures

• SG19 std::graph proposal

• Online Boost Graph documentation

Thank you

• Questions?

muxecoid@gmail.com

