Generic pathfinding

boost::graph for dummies

No raw loops

* If you have a loop in the middle of a function
* |t probably shouldn’t be there

e STL provides many commonly used algorithms

e Algorithms often work with iterators.
e STL provides many one dimension containers with begin and end

* Pointer is also an iterator

Graphs

* A set of vertices (nodes, locations, junctions)

* A set edges (connections, links) each is a pairs of members of first set
* There are many ways to define sets in code

* Edges and vertices may have properties

—il

+1 +2 +3

Graphs - grid TR

N »
= Yong Sun Shin

/‘

" S

Pathfinding

* Find best path from point to

* Another point
* All points within given range

* A set of well known algorithms
* BFS, Dijkstra, A*

e Can be applied to (almost) any graph
* And even infinite graph-like structure

There is no A* in STL

* Let’s Google generic pathfinding in C++
* We have boost::graph (since boost 1.18!)

* Does boost::astar_search really have 11 parameters? ;)
* Let’s decipher it

stackoverflow Products

Home Boost's Dijkstra's Algorithm Tutorial

PUBLIC Asked & years, 7 months ago Active 8 years, 7 months ago Viewed 8k times

&) Stack Overflow

| am having difficulty figuring out how to use Boost's Dijkstra's algorithm. | have gone over their

Tags
example and documentation, but | still cannot understand how to use it.

Users 7

This won’t be easv

The input

* Begin vertex

e End vertex or some other termination condition (optional)

* For example we want to see all spots reachable within fixed time

* Perhaps we want to find path to 5 different spots, in the same general
direction

* Anyway it is vastly different from begin and end of array

* Way to get a list of points adjacent to a given point

The input

* The full list of vertices may be available in advance or generated
dynamically

* Travel cost from point to adjacent point (weight)

* The generic way to represent it should be some kind of callable
* For BFS it is constant

* For A* estimated cost from point to end

The output

* The simplest exercise case is just the distance between two points.

* More practical case is distance and path.
* The topology of output is the same as input!

The Dijkstra algorithm

The Dijkstra algorithm

The Dijkstra algorithm

The Dijkstra algorithm

The Dijkstra algorithm

The Dijkstra algorithm

The Dijkstra algorithm

The Dijkstra algorithm

The Dijkstra algorithm prosty | Node

The Dijkstra algorithm outputs

Distance
container

Predecessor container
(0)W) \
5 2
W
10

1

Key points

* It is somewhat similar to std::transform. Input is likely a container and
output is same size as input.

* Unlike std::transform the input is not one dimensional. operator++ is
not enough!

e std::transform at every step of execution knows one variable place in
input container and matching place in output container

Indices vs iterators

* In case of STL’s std::transform if you have two iterators pointing at
matching places doing ++ or advance(X) on both will keep them
matching.

* Pathfinding at every step knows multiple variable locations in original
data structure

Let’s start with simple tasks to test
boost::graph usability

* Given an empty chess board of size NxN
1. Find minimum number of knight moves K to

get from {X1, Y1} to {X2, Y2}
e Should be super easy to implement manually
2. Find a set S of fields reachable from {X, Y}
within M moves ...
* Not much harder than first
3. Provide list of unreachable squares .. .m.

Graphs in boost::graph

* Graph is a concept
* A set of valid operations on something used as template argument

* Base graph requires very basic stuff for example mostly typedefs

e Other graphs require supporting more operations
* IncidenceGraph must provide operations for traversing neighbors of vertex
* VertexListGraph must provide number and iterable list of all vertices

Property maps

* Concept of a universal container

* The interface for property maps consists of three functions:
* get ()
* put ()
* operator[]
* Read only container can be based on calculation, boost provides
some utilities to help for implementing it.

Boost — A*

template <typename VertexListGraph, typename AStarHeuristic,
typename AStarVisitor, typename PredecessorMap,
typename CostMap, typename DistanceMap, typename WeightMap,
typename VertexIndexMap,
typename ColorMap, typename CompareFunction, typename CombineFunction,
typename CostInf, typename CostZero>
inline void
astar search

(const VertexListGraph &g, typename
graph traits<VertexListGraph>::vertex descriptor s,

AStarHeuristic h, AStarVisitor vis, PredecessorMap predecessor, CostMap
cost,

DistanceMap distance, WeightMap welght, VertexIndexMap index map,
ColorMap color,

CompareFunction compare, CombineFunction combine, CostInf inf, CostZero
zero) ;

Dijkstra should be simpler

template <typename Graph, typename DijkstraVisitor,
typename PredecessorMap, typename DistanceMap,
typename WeightMap, typename VertexIndexMap,
typename CompareFunction, typename CombilineFunction,

typename DistInf, typename DistZero, typename ColorMap =
default>

void dijkstra shortest paths
(const Graphé& g,
typename graph traits<Graph>::vertex descriptor s,
PredecessorMap predecessor, DistanceMap distance,
WeightMap weight, VertexIndexMap index map,
CompareFunction compare, CombineFunction combine,
DistInf inf, DistZero zero,
DijkstraVisitor vis, ColorMap color = default)

BFS is even simpler

template <class Graph, c¢lass Buffer,
class BFSVisitor, class ColorMap>
vold breadth first search(const Graphé& g,
typename graph traits<Graph>::vertex descriptor s,
Buffer& Q, BFSVisitor vis, ColorMap color);

Looks too simple to be what we are looking for, just a building block for
Dijkstra and other similar algorithms

OK, let’s decipher Dijkstra arguments

* const Graphé& g

* Provides a way (iterator pair) to get the list of neighbours of given vertex.
Defines the actual topology.

* Also full list of vertices in graph
* graph traits<Graph>::vertex descriptor s

e Start point for search. There are some overloads with multiple starting
points

OK, let’s decipher Dijkstra arguments

* PredecessorMap predecessor

* Main output. The actual path found. The previous position.
* DistanceMap distance

* Also output. The distance to a given point.

OK, let’s decipher Dijkstra arguments

* WeightMap weight
* Input. The cost to move between adjacent nodes.
* VertexIndexMap 1ndex map
* Translate coordinates to single number. Why is it a must?

* CompareFunction, CombineFunction, DistInf,
DistZero
* | hope there is an overload to provide a good default

OK, let’s decipher Dijkstra arguments

* DijkstraVisitor wvis
* Observes the search process.

* ColorMap color = default
 Whether the node was visited, finalized...

Grid 2D

* So we have boost::grid _graph<N> and it can be used for grids like . It
will provide the required functions
* to count vertices
... and iterate over all vertices
... and a function to get all adjacent nodes
 ...and mapping indices to coordinates, coordinates to indices

* By default adjacency is horizontal and vertical.

e Can we have it use knight’s move adjacency instead of default?
* Because the example on the next slide won’t pass the first unit test

Something that compiles

using gg2d = boost::grid graph<2, int>;

gg2d board(dimensions);

dijkstra shortest paths(board, begin,
p_map, dmap, weight,
boost::grid graph_index_map<
gg2d,
typename gg2d: :vertex descriptor,
typename gg2d::vertices size type>(board),
std::Lless<int>(),
boost::closed plus<int>((std::numeric Limits<int>::ma
(std: :numeric Limits<int>::max) (),
9,
boost::make dijkstra visitor(boost::null visitor()));

About boost parameter library

* There is an overload that uses boost parameter library.
* Imitate named function parameters
* Give reasonable default to parameters from the middle of the list

* Did not work for me
* Worked on original grid_graph, but not on subclass

No simple knight’s move

e grid_graph uses transform_iterator
* The transform function is part of the class, not customizable

* The actual code is for orthogonal N dimensional grid and the iteration
logic is part of grid_graph all about supporting any number of

dimensions

* Let’s create our own
* Do something wrong and you get compilation error with so much templates
you will never understand it

Let’s try to extend grid 2d

struct my grid : public boost::grid graph<Z,
int>

{
my grid(vertex descriptor dims)
boost::grid graph<2Z, int>(dims) {}
bi

Now what?

* Let’s make it generic so it accepts a list to iterator over valid move
range
 We could use it for hex grid!

* Let’s add iterator the naive way

Some snippets

int minKnightMovesEx(int n, CoordT begin, CoordT end) {
std::array<CoordT, 8 > moves = {
CoordT{ 1, 2 },
CoordT{ 1, -2 },
CoordT{ -1, 2 },
CoordT{ -1, -2 },
CoordT{ 2, 1 },
CoordT{ 2, -1 },
CoordT{ -2, 1 },
CoordT{ -2, -1},
}s

CoordT dimensions{n, n};
using my graph t = my graph<int, decltype(moves.begin())>;
my graph t board(moves.begin(), moves.end(), dimensions);

Some snippets

template <typename IndexType, class IterType>

struct my graph : public boost::grid graph<2,
IndexType>

{

typedef my graph type;

my graph(IterType moves begin, IterType moves end,
vertex descriptor dims) :
boost: :grid graph<2, int>(dims), m_dims(dims),
m_moves begin(moves begin),
m_moves_end(moves _end) {}

Some snippets

friend inline std::pair<typename type::out edge iterator,
typename type::out edge iterator>

out edges(typename type::vertex descriptor vertex,

const type& graph)

{

return std::make pair(out_edge_iterator(graph.m moves begin,
graph.m_moves_end, graph.m _dims, vertex),

out _edge iterator(graph.m _moves end, graph.m moves_ end,
graph.m_dims, vertex));

Some snippets

friend 1inline degree size type
out_degree(typename type::vertex descriptor vertex,
const type& graph)

throw std::Logic _error("my_graph does not support out degree");

* Incidence graph concept requires this function.
* Dijkstra does not use it

* And we do not want to implement it, but must make sure the one
from grid_graph is not used.

Some snippets

struct out_edge iterator :

public boost::forward iterator_ helper<out edge iterator,
std: :pair<vertex_descriptor, vertex _descriptor> >

{

out_edge iterator() = default;

out _edge iterator& operator=(const out edge iterator& other) = default;
out _edge iterator(IterType begin, IterType end,
vertex_descriptor dims,

const vertex descriptor& vertex)

:m_current(begin), m _end(end), m dims(dims)

{

m_edge.first = vertex;

update_and_skip out of bounds();

}

Some snippets

bool valid coordinate(const vertex descriptor& coord) {
return (coord[@] < m dims[@]) && (coord[1l] < m_dims[1])
&& (coord[@] >= ©) && (coord[1l] >= 0);
}

void update and skip out of bounds() {
while (m_current != m_end) {
m_edge.second[@] = m_edge.first[@0] + (*m_current)[0];
m_edge.second[1] = m_edge.first[1l] + (*m_current)[1];
if (!valid coordinate(m_edge.second)) {
++m_current;
} else {

return;

}

Let’s add some stuff

* Perhaps we want a way to mark certain cells as unreachable
* Extract coordinate validation function to parameter

* Terminate upon reaching certain distance.

* Perhaps we want a way to mark certain cells as expensive to move

Into
 Just use a different weight map

Quick and dirty cell validator

template <typename IndexType>
struct bounds_validator

{

};

typedef boost::array<IndexType, 2> vertex descriptor;
bounds validator() = default;

bool operator()(const vertex descriptor& coord)

{
return (coord[@] < m dims[@]) && (coord[1l] < m _dims[1])
&& (coord[@] >= @) && (coord[1] >= 0);

}

bounds validator(vertex descriptor dims) : m_dims(dims) {}

vertex descriptor m_dims;

Visitor

* Has methods called on certain events during search. For example:
* vis.discover_vertex(u, g) is invoked the first time the algorithm encounters
vertex u.
* Can serve to collect output

* For example if you need to build a list of locations reachable withi n time X
and another list for locations reachable between X+1 to 2X

Visitor

* Has methods called on certain events during search. For example:
* vis.discover_vertex(u, g) is invoked the first time the algorithm encounters
vertex u.

e Can serve to collect output

* For example if you need to build a list of locations reachable within
time X and another list for locations reachable between X+1 to 2X

* Visitor can ask to be called when path was found and check how the result in
distance map compares to X.

e Either store the vertex in one of two result lists or exit

Let’s look at examples in boost

documentation
struct astar goal visitor : public boost::default astar visitor
{ _ _ _ _
astar goal visitor (vertex descriptor goal) : m goal(goal) {};

vold examline vertex(vertex descriptor u, const
filtered gridé&)
{ —

1f (u == m goal)
throw found goal() ;

J

private:
vertex descriptor m goal;
b - -

* Holy flipping shine! Does boost documentation actually recommend
using exceptions for normal non-exceptional flow control?

Alternatives

 “LEMON” Graph Library

e Often less annoying syntax

 Different algorithm set
e No A*
e Weird iterators

* LEDA

e Commercial
e Bad documentation

std::graph

* Currently just a proposal.
* Not even close to being approved.

* Defines many concepts boost like.
* No working implementation.

* Based on stronger language (C++20) than BGL (C++98) and should be
easier to use.

BGL - The good

* Every underlying data structure can be adopted to work with BGL
algorithms

* Some parts are implemented in simplest, given inherent problem
complexity, way.

* Implements many different algorithms
* Some algorithms are easy to use

 Header only

BGL - The desired

* The documentation and examples are severely lacking.

e Overloads with less arguments for common needs are missing

* Visitor for search for given node, up to certain distance, binning by distance
range.

* Exceptions as the natural way to implement non exceptional control
flow.

 Lots of minor stuff like IncidenceGraph required to provide a number
of neighbors in advance.

Discussion

* |t is easier to learn and use std::sort, than to write own sort for

specific container and type

* It is easier to learn and use std::rotate, than to write your own rotate for
specific type

* For some problems like topological sort on adjacency list BGL is not
harder to use, as to write your own.

* It is much easier to write your own specific case pathfinding than to
learn and use the implementation by BGL

e std::graph authors should think twice about tradeoff between
genericity and easy of use.

Recommended reading/watching

* Sean Parent — basically everything

* No raw loops
 No incidental data structures

e SG19 std::graph proposal

SnlineE oo .

Thank you

e Questions?

muxecoid@gmail.com

