Generic pathfinding

boost::graph for dummies



No raw loops

* If you have a loop in the middle of a function
* |t probably shouldn’t be there

e STL provides many commonly used algorithms

e Algorithms often work with iterators.
e STL provides many one dimension containers with begin and end

* Pointer is also an iterator




Graphs

* A set of vertices (nodes, locations, junctions)

* A set edges (connections, links) each is a pairs of members of first set
* There are many ways to define sets in code

* Edges and vertices may have properties
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Pathfinding

* Find best path from point to

* Another point
* All points within given range

* A set of well known algorithms
* BFS, Dijkstra, A*

e Can be applied to (almost) any graph
* And even infinite graph-like structure



There is no A* in STL

* Let’s Google generic pathfinding in C++
* We have boost::graph (since boost 1.18!)

* Does boost::astar_search really have 11 parameters? ;)
* Let’s decipher it

stackoverflow  Products

Home Boost's Dijkstra's Algorithm Tutorial

PUBLIC Asked & years, 7 months ago  Active 8 years, 7 months ago  Viewed 8k times

&) Stack Overflow

| am having difficulty figuring out how to use Boost's Dijkstra's algorithm. | have gone over their

Tags
example and documentation, but | still cannot understand how to use it.

Users 7



This won’t be easv




The input

* Begin vertex

e End vertex or some other termination condition (optional)

* For example we want to see all spots reachable within fixed time

* Perhaps we want to find path to 5 different spots, in the same general
direction

* Anyway it is vastly different from begin and end of array

* Way to get a list of points adjacent to a given point



The input

* The full list of vertices may be available in advance or generated
dynamically

* Travel cost from point to adjacent point (weight)

* The generic way to represent it should be some kind of callable
* For BFS it is constant

* For A* estimated cost from point to end



The output

* The simplest exercise case is just the distance between two points.

* More practical case is distance and path.
* The topology of output is the same as input!



The Dijkstra algorithm
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The Dijkstra algorithm outputs
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Key points

* It is somewhat similar to std::transform. Input is likely a container and
output is same size as input.

* Unlike std::transform the input is not one dimensional. operator++ is
not enough!

e std::transform at every step of execution knows one variable place in
input container and matching place in output container



Indices vs iterators

* In case of STL’s std::transform if you have two iterators pointing at
matching places doing ++ or advance(X) on both will keep them
matching.

* Pathfinding at every step knows multiple variable locations in original
data structure



Let’s start with simple tasks to test
boost::graph usability

* Given an empty chess board of size NxN
1. Find minimum number of knight moves K to

get from {X1, Y1} to {X2, Y2}
e Should be super easy to implement manually
2. Find a set S of fields reachable from {X, Y}
within M moves ...
* Not much harder than first
3. Provide list of unreachable squares .. .m.




Graphs in boost::graph

* Graph is a concept
* A set of valid operations on something used as template argument

* Base graph requires very basic stuff for example mostly typedefs

e Other graphs require supporting more operations
* IncidenceGraph must provide operations for traversing neighbors of vertex
* VertexListGraph must provide number and iterable list of all vertices



Property maps

* Concept of a universal container

* The interface for property maps consists of three functions:
* get ()
* put ()
* operator[]
* Read only container can be based on calculation, boost provides
some utilities to help for implementing it.



Boost — A*

template <typename VertexListGraph, typename AStarHeuristic,
typename AStarVisitor, typename PredecessorMap,
typename CostMap, typename DistanceMap, typename WeightMap,
typename VertexIndexMap,
typename ColorMap, typename CompareFunction, typename CombineFunction,
typename CostInf, typename CostZero>
inline void
astar search

(const VertexListGraph &g, typename
graph traits<VertexListGraph>::vertex descriptor s,

AStarHeuristic h, AStarVisitor vis, PredecessorMap predecessor, CostMap
cost,

DistanceMap distance, WeightMap welght, VertexIndexMap index map,
ColorMap color,

CompareFunction compare, CombineFunction combine, CostInf inf, CostZero
zero) ;



Dijkstra should be simpler

template <typename Graph, typename DijkstraVisitor,
typename PredecessorMap, typename DistanceMap,
typename WeightMap, typename VertexIndexMap,
typename CompareFunction, typename CombilineFunction,

typename DistInf, typename DistZero, typename ColorMap =
default>

void dijkstra shortest paths
(const Graphé& g,
typename graph traits<Graph>::vertex descriptor s,
PredecessorMap predecessor, DistanceMap distance,
WeightMap weight, VertexIndexMap index map,
CompareFunction compare, CombineFunction combine,
DistInf inf, DistZero zero,
DijkstraVisitor vis, ColorMap color = default)



BFS is even simpler

template <class Graph, c¢lass Buffer,
class BFSVisitor, class ColorMap>
vold breadth first search(const Graphé& g,
typename graph traits<Graph>::vertex descriptor s,
Buffer& Q, BFSVisitor vis, ColorMap color);

Looks too simple to be what we are looking for, just a building block for
Dijkstra and other similar algorithms



OK, let’s decipher Dijkstra arguments

* const Graphé& g

* Provides a way (iterator pair) to get the list of neighbours of given vertex.
Defines the actual topology.

* Also full list of vertices in graph
* graph traits<Graph>::vertex descriptor s

e Start point for search. There are some overloads with multiple starting
points



OK, let’s decipher Dijkstra arguments

* PredecessorMap predecessor

* Main output. The actual path found. The previous position.
* DistanceMap distance

* Also output. The distance to a given point.



OK, let’s decipher Dijkstra arguments

* WeightMap weight
* Input. The cost to move between adjacent nodes.
* VertexIndexMap 1ndex map
* Translate coordinates to single number. Why is it a must?

* CompareFunction, CombineFunction, DistInf,
DistZero
* | hope there is an overload to provide a good default



OK, let’s decipher Dijkstra arguments

* DijkstraVisitor wvis
* Observes the search process.

* ColorMap color = default
 Whether the node was visited, finalized...



Grid 2D

* So we have boost::grid _graph<N> and it can be used for grids like . It
will provide the required functions
* to count vertices
... and iterate over all vertices
... and a function to get all adjacent nodes
 ...and mapping indices to coordinates, coordinates to indices

* By default adjacency is horizontal and vertical.

e Can we have it use knight’s move adjacency instead of default?
* Because the example on the next slide won’t pass the first unit test



Something that compiles

using gg2d = boost::grid graph<2, int>;

gg2d board(dimensions);

dijkstra shortest paths(board, begin,
p_map, dmap, weight,
boost::grid graph_index_map<
gg2d,
typename gg2d: :vertex descriptor,
typename gg2d::vertices size type>(board),
std::Lless<int>(),
boost::closed plus<int>((std::numeric Limits<int>::ma
(std: :numeric Limits<int>::max) (),
9,
boost::make dijkstra visitor(boost::null visitor()));



About boost parameter library

* There is an overload that uses boost parameter library.
* Imitate named function parameters
* Give reasonable default to parameters from the middle of the list

* Did not work for me
* Worked on original grid_graph, but not on subclass



No simple knight’s move

e grid_graph uses transform_iterator
* The transform function is part of the class, not customizable

* The actual code is for orthogonal N dimensional grid and the iteration
logic is part of grid_graph all about supporting any number of

dimensions

* Let’s create our own
* Do something wrong and you get compilation error with so much templates
you will never understand it



Let’s try to extend grid 2d

struct my grid : public boost::grid graph<Z,
int>

{
my grid(vertex descriptor dims)
boost::grid graph<2Z, int>(dims) {}
bi



Now what?

* Let’s make it generic so it accepts a list to iterator over valid move
range
 We could use it for hex grid!

* Let’s add iterator the naive way



Some snippets

int minKnightMovesEx(int n, CoordT begin, CoordT end) {
std::array<CoordT, 8 > moves = {
CoordT{ 1, 2 },
CoordT{ 1, -2 },
CoordT{ -1, 2 },
CoordT{ -1, -2 },
CoordT{ 2, 1 },
CoordT{ 2, -1 },
CoordT{ -2, 1 },
CoordT{ -2, -1},
}s

CoordT dimensions{n, n};
using my graph t = my graph<int, decltype(moves.begin())>;
my graph t board(moves.begin(), moves.end(), dimensions);



Some snippets

template <typename IndexType, class IterType>

struct my graph : public boost::grid graph<2,
IndexType>

{

typedef my graph type;

my graph(IterType moves begin, IterType moves end,
vertex descriptor dims) :
boost: :grid graph<2, int>(dims), m_dims(dims),
m_moves begin(moves begin),
m_moves_end(moves _end) {}



Some snippets

friend inline std::pair<typename type::out edge iterator,
typename type::out edge iterator>

out edges(typename type::vertex descriptor vertex,

const type& graph)

{

return std::make pair(out_edge_iterator(graph.m moves begin,
graph.m_moves_end, graph.m _dims, vertex),

out _edge iterator(graph.m _moves end, graph.m moves_ end,
graph.m_dims, vertex));



Some snippets

friend 1inline degree size type
out_degree(typename type::vertex descriptor vertex,
const type& graph)

throw std::Logic _error("my_graph does not support out degree");

* Incidence graph concept requires this function.
* Dijkstra does not use it

* And we do not want to implement it, but must make sure the one
from grid_graph is not used.



Some snippets

struct out_edge iterator :

public boost::forward iterator_ helper<out edge iterator,
std: :pair<vertex_descriptor, vertex _descriptor> >

{

out_edge iterator() = default;

out _edge iterator& operator=(const out edge iterator& other) = default;
out _edge iterator(IterType begin, IterType end,
vertex_descriptor dims,

const vertex descriptor& vertex)

:m_current(begin), m _end(end), m dims(dims)

{

m_edge.first = vertex;

update_and_skip out of bounds();

}



Some snippets

bool valid coordinate(const vertex descriptor& coord) {
return (coord[@] < m dims[@]) && (coord[1l] < m_dims[1])
&& (coord[@] >= ©) && (coord[1l] >= 0);
}

void update and skip out of bounds() {
while (m_current != m_end) {
m_edge.second[@] = m_edge.first[@0] + (*m_current)[0];
m_edge.second[1] = m_edge.first[1l] + (*m_current)[1];
if (!valid coordinate(m_edge.second)) {
++m_current;
} else {

return;

}



Let’s add some stuff

* Perhaps we want a way to mark certain cells as unreachable
* Extract coordinate validation function to parameter

* Terminate upon reaching certain distance.

* Perhaps we want a way to mark certain cells as expensive to move

Into
 Just use a different weight map



Quick and dirty cell validator

template <typename IndexType>
struct bounds_validator

{

};

typedef boost::array<IndexType, 2> vertex descriptor;
bounds validator() = default;

bool operator()(const vertex descriptor& coord)

{
return (coord[@] < m dims[@]) && (coord[1l] < m _dims[1])
&& (coord[@] >= @) && (coord[1] >= 0);

}

bounds validator(vertex descriptor dims) : m_dims(dims) {}

vertex descriptor m_dims;



Visitor

* Has methods called on certain events during search. For example:
* vis.discover_vertex(u, g) is invoked the first time the algorithm encounters
vertex u.
* Can serve to collect output

* For example if you need to build a list of locations reachable withi n time X
and another list for locations reachable between X+1 to 2X



Visitor

* Has methods called on certain events during search. For example:
* vis.discover_vertex(u, g) is invoked the first time the algorithm encounters
vertex u.

e Can serve to collect output

* For example if you need to build a list of locations reachable within
time X and another list for locations reachable between X+1 to 2X

* Visitor can ask to be called when path was found and check how the result in
distance map compares to X.

e Either store the vertex in one of two result lists or exit



Let’s look at examples in boost

documentation
struct astar goal visitor : public boost::default astar visitor
{ _ _ _ _
astar goal visitor (vertex descriptor goal) : m goal(goal) {};

vold examline vertex(vertex descriptor u, const
filtered gridé&)
{ —

1f (u == m goal)
throw found goal() ;

J

private:
vertex descriptor m goal;
b - -

* Holy flipping shine! Does boost documentation actually recommend
using exceptions for normal non-exceptional flow control?



Alternatives

 “LEMON” Graph Library

e Often less annoying syntax

 Different algorithm set
e No A*
e Weird iterators

* LEDA

e Commercial
e Bad documentation



std::graph

* Currently just a proposal.
* Not even close to being approved.

* Defines many concepts boost like.
* No working implementation.

* Based on stronger language (C++20) than BGL (C++98) and should be
easier to use.



BGL - The good

* Every underlying data structure can be adopted to work with BGL
algorithms

* Some parts are implemented in simplest, given inherent problem
complexity, way.

* Implements many different algorithms
* Some algorithms are easy to use

 Header only



BGL - The desired

* The documentation and examples are severely lacking.

e Overloads with less arguments for common needs are missing

* Visitor for search for given node, up to certain distance, binning by distance
range.

* Exceptions as the natural way to implement non exceptional control
flow.

 Lots of minor stuff like IncidenceGraph required to provide a number
of neighbors in advance.



Discussion

* |t is easier to learn and use std::sort, than to write own sort for

specific container and type

* It is easier to learn and use std::rotate, than to write your own rotate for
specific type

* For some problems like topological sort on adjacency list BGL is not
harder to use, as to write your own.

* It is much easier to write your own specific case pathfinding than to
learn and use the implementation by BGL

e std::graph authors should think twice about tradeoff between
genericity and easy of use.



Recommended reading/watching

* Sean Parent — basically everything

* No raw loops
 No incidental data structures

e SG19 std::graph proposal

SnlineE oo .



Thank you

e Questions?

muxecoid@gmail.com



