lFl'Oé Jerry Wiltse

Software Developer :: Conan Team

C/C++ Package manager

Conan Package Manager in Practice

Copyright @ 2021 JFrog - All rights reserved

('..'_

<)

Environment Setup JFrog

S git clone

S cd conan_cpp_demo

S docker-compose up -d

S docker exec -it conan-terminal-demo bash

can re-run above command from new shell if disconnected

Copyright @ 2021 JFrog - All rights reserved.

https://github.com/solvingj/conan_cpp_demo

Introduction JFrog

Package Manager for C/C++
Open-source, MIT license

Multi-platform

Any build system
Stable
Active

Free Training Provided by JFrog

o https://academy.jfrog.com

Copyright @ 2021 JFrog - All rights reserved.

https://academy.jfrog.com

=

JFrog Moderated
Community Contributions

Architecture JFrog
O - JFrog
JFrog Artifactory BUNAN
Servers 0SS Packages
(artifact storage) ® Self-managed e Cloud-Hosted
: gr?.upiemise e JFrog Managed
[J
[J

Developer
machine / Cl

Copyright @ 2021 JFrog - All rights reserved.

Y
&,

Multi-Binary Packages P — JFrog
< pkg/0.1@user/channel >
\
Package —» ij< > Package “binaries”
Servers Recipe 41" \.‘/

|

N— -~
_—

e
\
Client

\/

pkg/0. 1@user/channel

—
-

Copyright @ 2021 JFrog - All rights reserved.

NN
S~

Y
=,

Multi-Binary Packages JFrog

Conan Package foptions|

shared: False
[settings]

. h: x86_64
myl | bl1 . 0 . 0 Un |q ue ?)L?Id_)’:ypg: Release
compiler: apple-clang

Binaries compiler.version: 8.1

os: Macos

09512ff863f37e98ed748e

[options]
| shared: True
[settings]
1edd309d7294a74df2650 | e BRI (2
build_type: Release
compiler: apple-clang
compiler.version: 8.1
os: Macos

76feb0214efcf373ach9ea

[options]
shared: False
[settings]
arch: x86_64
build_type: Debug
compiler: apple-clang

“Package ID’s” compiler.version: 8.1
os: Macos

RN Y |

[.

————— -

Copyright @ 2021 JFrog - All rights reserved.

Y
=,

Remote Repositories JFrog

. [options]
myl|bl1 _0_0 shared: False
[settings]
arch: x86_64 i
- build_type: Release [options]
/ compiler: apple-clang s.hared: False
compiler.version: 8.1 [Set::.cghs']x% 64
Remote Server 0s: macos build_type: Release
compiler: gcc
\. ¢ compiler.version: 9.0
os: linux

Match package_id

L .

[options]
shared: False
[settings]
arch: x86_64
build_type: Release
compiler: gcc
compiler.version: 9.0
os: linux

Local Client

mylib/1.0.0

Copyright @ 2021 JFrog - All rights reserved.

Copyright @ 2021 JFrog - All rights reserved.

,(.. . .

2

Exercise : Consume a Conan Package JFrog

Single-file C++ executable
CMake Build System

Depends on Boost Regex library
Command : “conan install ..”

Copyright @ 2021 JFrog - All rights reserved.

o
=,

Exercise : Consume a Conan Package JFrog

regex.cpp conanfile.txt CMakelists.txt
#include <boost/regex.hpp> [requires] cmake_minimum_required(VERSION 3.1)
#include <string> boost/1.74.0
#include <iostream> [generators] project(boost_regex_demo)
cmake_find_package
virtualenv find_package(Boost COMPONENTS regex REQUIRED)

add_executable(regex_exe regex.cpp)

target_link_libraries(regex_exe
PRIVATE
Boost: :regex

Copyright @ 2021 JFrog - All rights reserved.

Exercise : Consume a Conan Package : Linux

S cd examples/cmake_find_package

S mkdir build_linux && cd build_linux

S conan install .. --profile ../../profiles/linux_gcc_7 release
S source activate.sh

S cmake .. -DCMAKE_BUILD TYPE=Release -DCMAKE_MODULE_PATH=SPWD
S cmake --build .

S ./regex_exe "Subject: Re: conan"

> Regarding : conan

S source deactivate.sh

Scd..

Above uses pre-compiled binaries from conan-center

Alternatively, build some, or all dependencies from source
S conan install .. --build=all # or --build=boost,bzip2

Copyright @ 2021 JFrog - All rights reserved.

Exercise : Consume a Conan Package : Windows

S cd examples/cmake_find_package

S mkdir build_windows && cd build_windows

S conan install .. --profile ../../profiles/windows _msvc 16 release
S call activate.bat

S cmake .. -DCMAKE_BUILD TYPE=Release -DCMAKE_MODULE_PATH=%CD:\=/%
S cmake --build . --config Release

S Release\regex_exe.exe "Subject: Re: conan"

> Regarding : conan

S call deactivate.bat

Scd..

Above uses pre-compiled binaries from conan-center

Alternatively, build some, or all dependencies from source

S conan install .. --build=all # or --build=boost,bzip2

Copyright @ 2021 JFrog - All rights reserved.

s
=,

Exercise : Consume a Conan Package : Summary JFrog

Command: “conan install”
Consuming OSS packages can be simple
Can provide dependencies to any build system
o Including support cmake find_package”
— Including Components Support for Boost, etc.
® Conan Center provides many OSS packages
o Many precompiled binaries
o --build=... to build dependencies from source
— Often recommended or required

Copyright @ 2021 JFrog - All rights reserved.

Consuming OSS libraries is only half of C/C++ JFrog

e Other half is private dependency management
o Professional development teams
— Enterprise, Startup, Research, Academia
o At least as many affected users as the OSS community
O At least as complicated as OSS development
o Completely new sets of challenges
— Scalability, Maintainability, Reproducibility, Etc.
e Conan has extensive collection of related features
o Devoting at least as much time to these use-cases

Copyright @ 2021 JFrog - All rights reserved.

A

2

What is a Conan Recipe? JFrog

® Recipe is the instruction file to create a package
o “conanfile.py” (a python class)
® Show Three Examples
o Empty Recipe
o Example with CMake project
o Example for generic/custom build system

Copyright @ 2021 JFrog - All rights reserved.

from conans import ConanFile
from conan.tools.cmake import CMake, CMakeToolchain, CMakeDeps

MylibConan(ConanFile):
name = "mylib"
version = "0.1.0"

requirements(self):
define dependencies

export_sources(self):
capture the sources

generate(self):
convert conan variables into build-system files

build(self):
invoke the build system, reading generated files

package(self):
copy artifacts from “build” to “package” directory

package_info(self):
declare whats in the package for consumers

Copyright @ 2021 JFrog - All rights reserved. . e ‘

from conans import ConanFile
from conan.tools.cmake import CMake, CMakeToolchain, CMakeDeps

MylibConan(ConanFile):
name = "mylib"
version = "0.1.0"
settings = "os", "arch", "compiler", "build type"

requirements(self):
.requires("boost/1.74.0@") # -> depend on boost 1.74.0

export_sources(self):
.copy("*") -> copies all files/folders from working dir into a “source” directory

generate(self):
CMakeToolchain() .generate() -> conantoolchain.cmake (variables translated from conan settings)
CMakeDeps ().generate() -> creates FindBoost.cmake (sets paths to Boost files in conan cache)

build(self):

cmake = CMake() CMake helper auto-formats CLI arguments for CMake
cmake.configure() cmake -DCMAKE_TOOLCHAIN FILE=conantoolchain.cmake
cmake.build() cmake --build

package(self):
cmake = CMake(For CMake projects which define an install target, leverage it
cmake.install() cmake --build . --target=install

sets CMAKE_INSTALL_PREFIX to appropriate directory in conan cache

package_info(self):
.cpp_info.includedirs = ["include"] # List of header directories
.cpp_info.libdirs = ["1ib"] # List of directories to search for libraries
.cpp_info.libs = ["mylib"] # List of libraries to link with

EE—

Copyright @ 2021 JFrog - All rights reserved. . e ‘

from conans import ConanFile

MyLibConan(ConanFile):
name = "mylib"
version = "0.1.0"
settings = "os", "arch", "compiler", "build_type"

requirements(self):
.requires("boost/1.74.0") # -> depend on boost 1.74.0

export_sources(self):
.copy("*") # -> copies all files/folders from working dir into a “source” directory

generate(self):
self. custom_function() # -> customfile.txt (custom code to generate custom file)

build(self):
self.run("custom build system ... <flags>") # -> build system read dependency info from customfile.txt

package(self):

self.copy("*.h", dst="include", src="src" Organize 1ib files for each os into uniform dir structure
self.copy("*.d11", dst="bin", keep_ path=

self.copy("*.1ib", dst="1ib", keep_path=

self.copy("*.dylib*", dst="1ib", keep_path=

self.copy("*.so0", dst="1ib", keep_path=

self.copy("*.a", dst="1ib", keep_ path=

package_info(self):
.cpp_info.includedirs = ["include"] of header directories
.cpp_info.libdirs = ["1ib"] of directories to search for libraries
.cpp_info.libs = ["mylib"] of libraries to link with

Copyright @ 2021 JFrog - All rights reserved. . e ‘

A

2

Exercise : Create a Conan Package JFrog

® Same Project as Previous Example
® Replace “conanfile.txt” with “conanfile.py”

o Define all required methods in conanfile.py
e Create a package from the recipe

o Command: “conan create”

Copyright @ 2021 JFrog - All rights reserved.

Y
=,

Exercise : Create a Conan Package JFrog
regex.cpp conanfile.py CMakelists.txt
#include <boost/regex.hpp> Next Slide cmake_minimum_required(VERSION 3.1)
#include <string>
#include <iostream> project(boost_regex_demo)

find_package(Boost COMPONENTS regex REQUIRED)
add_executable(regex_exe regex.cpp)
target_link_libraries(regex_exe

PRIVATE
Boost: :regex

Copyright @ 2021 JFrog - All rights reserved.

from conans import ConanFile
from conan.tools.cmake import CMake

RegexConan(ConanFile):
name = "regex"
version = "0.1.0"

settings = "os", "arch", "compiler", "build_type'
generators = "cmake_find_package", "virtualenv"

requirements(self):
.requires("boost/1.74.0@")

export_sources(self):
-copy ("*")

build(self):

cmake = CMake()
cmake.configure()
cmake.build()

package(self):
cmake = CMake(
cmake.install()

Copyright @ 2021 JFrog - All rights reserved. . e ‘

Exercise : Create a Conan Package : Linux

S cd examples/create_package
S conan create . demo/demo --profile ../profiles/linux_gcc_7 release
S mkdir run_linux && cd run_linux
S conan install regex/0.1.0@demo/demo -g virtualrunenv \
--profile ../profiles/linux_gcc_7 release
S source activate_run.sh
S regex_exe "Subject: Re: conan"
> Regarding : conan
S source deactivate_run.sh
Scd..

Copyright @ 2021 JFrog - All rights reserved.

Exercise : Create a Conan Package : Windows

S cd examples/create_package
S conan create . demo/demo --profile ../profiles/windows _msvc 16 release
S mkdir run_windows && cd run_windows
S conan install regex/0.1.0@demo/demo -g virtualrunenv »
--profile ../profiles/windows_msvc_16_release
S activate_run.bat REM no “source” command on windows
S regex_exe.exe "Subject: Re: conan"
> Regarding : conan
S deactivate_run.bat REM no “source” command on windows
Scd..

Copyright @ 2021 JFrog - All rights reserved.

A

2

Exercise : Create a Conan Package : Summary JFrog

e Conan Recipe : “conanfile.py”

o Instructions for Creating a Conan Package
e Python Class with Standard Methods

O requirements()

o exports_sources()

o build()

o package()

o package_info()
e Conan calls methods in order to create a package

Copyright @ 2021 JFrog - All rights reserved.

Exercise : Upload a Conan Package

® “conan remote list” shows all remotes
® “conanremote add” to add new remotes
® add repository from demo docker environment

o JFrog Artifactory CE for C/C++
— Free Community Edition

— Designed for Conan Repositories
e Command: “conan upload”

Copyright @ 2021 JFrog - All rights reserved.

,(.. . .

2

JFrog

Environment Setup : Start Artifactory CE JFrog

S docker-compose -f docker-compose-artifactory-ce.yml up -d
S docker exec -it conan-terminal-demo bash
can re-run above command from new shell if disconnected

Copyright @ 2021 JFrog - All rights reserved.

Exercise : Upload a Conan Package

S conan remote list
S conan remote add artifactory \
S conan user -p=password -r=artifactory admin # Login to Remote

S conan upload "regex/0.1.0@demo/demo" -r=artifactory --all
S conan search regex/0.1.0@demo/demo -r=artifactory

Copyright @ 2021 JFrog - All rights reserved.

http://artifactory-ce-demo:8081/artifactory/api/conan/conan-local

Exercise : Upload a Conan Package : Summary JFrog
Command: “conan upload”
Other easy commands for remote management
conan-center comes installed by default
Local conan cache in ~/.conan/data
o Shared by any number of local projects and builds
Local/Remote repository strategy similar to other package managers
Artifactory CE for C/C++
o Free, local hosting for Conan repositories

Copyright @ 2021 JFrog - All rights reserved.

Y
&,

More Resources JFrog

1 Github Project

2 Blog

3 Documentation

4 Conan-Center

5 JFrog Academy Courses

6 Slack: https://cppalliance.ora/slack #conan

Copyright @ 2021 JFrog - All rights reserved.

https://cppalliance.org/slack

Q @conan_io 0 @solvingj linkedin.com/company/conan-io

Copyright @ 2021 JFrog - All rights reserved.

https://www.linkedin.com/company/conan-io

