
A fun example of 
polymorphism with 
std::function



Inspiration

• A StackOverflow question: "Is it possible to 

declare a pointer to a function with unknown (at 

compile time) return type?"

• The person asking wanted to support callbacks 

that may have different return types (double and 

int in their case).

• Generalizing this is where the fun starts :)



Polymorphism?

• The provision of a single interface to entities of 

different types.

• Our entities will be callable objects.

• The interface is provided by std::function.



std::function 101

• A class template from the 

C++ standard library.

• Can store any copyable entity 

that may be invoked as a 

function.

• Is itself a callable object that 

supports operator().

• The supported signature needs to 

be specified up front, e.g.

std::function<void(double)>

std::function<int()>



The Actual Call Itself

• Is type safe.

• The argument types must be convertible to the 

declared parameter types.

• The return value is implicitly converted to the declared return type.

• If the declared return type is void, the return value is properly discarded.

• Provides great flexibility.



Discard the Return Value – Declare it void

std::function<void(int)> f;

f = [](int x) { return x*2; };

f = [](int x) { return std::to_string(x); };

f = std::to_upper;

// Whatever gets returned, it's static_cast to void



Where We Started – Different Return Types

• We originally wanted to support a return value that is one of 

several types.

• Sounds like a union!

• We can compose std::function with std::variant.



Answering the Original Question

std::function<std::variant<double, int>(double)> f;

f = static_cast<...>(std::abs);

f = [](double x) { return static_cast<int>(x); }

// The variant supports conversions to its alternative types



No std::variant ? No Problem!

• boost::variant works, and if we really need to, we can go DIY...

struct Result {

union {

int i_res;

double d_res;

};

enum { IS_INT, IS_DOUBLE } u_tag;

Result(Result const&) = default;

Result(int i) : i_res{i}, u_tag{IS_INT} {}

Result(double d) : d_res{d}, u_tag{IS_DOUBLE} {}

};



Questions?


