
1©2020 Check Point Software Technologies Ltd. 

Noam Weiss

Why, When, and How

THE STD::TUPLE CONTAINER



2©2020 Check Point Software Technologies Ltd. 

• Historical Overview

• Case Study

• Main features of std::tuple

• Limitations of std::tuple (or why don’t we use it more)

• Honorable mentions

Agenda



3©2020 Check Point Software Technologies Ltd. 

Brief History

• The std::tuple contain zero or more elements of potentially different 
type

• Uses veridic templates

• Can be thought of as an extension of std::pair

• It was introduced, along with helpers, in C++11

• It was slightly enhanced in C++14, and more so in C++17



4©2020 Check Point Software Technologies Ltd. 

Case study

Suppose I have a function called query(…) and after invoking her I 

want to know three things:

1. What answer did I receive

2. From whom did I receive the answer

3. And statistics such as how long it took, attempts made, and so on.

The problem is that a function can only return one element, so we 
need to find a way to turn one into three.



5©2020 Check Point Software Technologies Ltd. 

Solutions

There are three major categories of solutions to this problem:

1. Output parameters.

2. Side effects.

3. Wrapping several elements in a container.

The main advantage of the third option is that in the case of failure 
there are no question as to the state of the output parameters or 
side effects.



6©2020 Check Point Software Technologies Ltd. 

Solution template

std::tuple<answer_t, source_t, stats_t>

quary(…)

{

answer_t answer;

source_t source;

stats_t stats;

…

return std::tuple<answer_t, source_t, stats_t>(answer, source, stats);

}



7©2020 Check Point Software Technologies Ltd. 

Solution template

std::tuple<answer_t, source_t, stats_t>

quary(…)

{

answer_t answer;

source_t source;

stats_t stats;

…

return std::make_tuple(answer, source, stats);

}



8©2020 Check Point Software Technologies Ltd. 

Solution template

std::tuple<answer_t, source_t, stats_t> res = query(…);

…

/* Check if the answer is from a reliable source */

if (std::get<1>(res).is_reliability_at_least(…)) {

…

}

…



9©2020 Check Point Software Technologies Ltd. 

Solution template

std::tuple<answer_t, source_t, stats_t> res = query(…);

source_t &source = std::get<1>(res);

…

/* Check if the answer is from a reliable source */

if (source.is_reliability_at_least(…)) {

…

}

…



10©2020 Check Point Software Technologies Ltd. 

Solution template

answer_t answer;

source_t source;

stats_t stats;

std::tie(answer, source, stats) = query(…);

…

/* Check if the answer is from a reliable source */

if (source.is_reliability_at_least(…)) {

…

}

…



11©2020 Check Point Software Technologies Ltd. 

Solution template

answer_t answer;

source_t source;

stats_t stats;

try {

std::tie(answer, source, stats) = query(…);

} catch(…) {

answer = …;

source = …;

stats = …;

}



12©2020 Check Point Software Technologies Ltd. 

Solution template – C++17

auto [answer, source, stats] = query(…);

…

/* Check if the answer is from a reliable source */

if (source.is_reliability_at_least(…)) {

…

}

…



13©2020 Check Point Software Technologies Ltd. 

std::tuple VS. struct

std::tuple<

answer_t,

source_t,

stats_t

>

struct {

answer_t first;

source_t second;

stats_t third;

}

1. Semantics.

2. Standardization.

3. Strict ordering.

4. Memory consumption.



14©2020 Check Point Software Technologies Ltd. 

The std::tuple

• Constructor

• Assignment

• Since C++20 returns constexpr

• swap

• Also exists as an external function

• Since C++20 returns constexpr



15©2020 Check Point Software Technologies Ltd. 

Basic support functions

• std::make_tuple

• std::tie

• std::get

• Comparison operators 



16©2020 Check Point Software Technologies Ltd. 

The std::get

The std::get function is templated on a number I and tuple types 
Types, and returns a reference to the element in the I-th position in 

the tuple.

Since C++14 there is a version that is templated on a specific type T
and tuple types Types. And returns a reference to the only element 

of that type in the tuple.

std::get<answer_t>(res);



17©2020 Check Point Software Technologies Ltd. 

The std::tuple_size

• Given a tuple, it gives its size

• Inherits from std:: integral _ constant

• Members

• value - static

• Methods

• operator std::size_t

• operator() – since C++14

• Types

• value_type

• type

• Since C++17 there is a helper definition
• temlpate <class T> inline constexpr std::size_t tuple_size_v;



18©2020 Check Point Software Technologies Ltd. 

Working with tuples

Lets say that we want to print the content of a tuple for debugging 
purposes, and we assume that all the types are printable.

We would like to write some thing like this:

for (auto &elem : my_tuple) {

std::cout << elem << std::endl;

}

Won’t work, since 
std::tuple doesn’t 

have iterators!



19©2020 Check Point Software Technologies Ltd. 

size_t my_tuple_size =

tuple_size<decltype(my_tuple)>::value;

for (size_t i = 0; i < my_tuple_size; ++i) {

cout << get<i>(my_tuple) << endl;

}

Working with tuples

Template parameter must be 
known at compile time!What type is this?

We can’t Iterate over tuples due to the different types of 

the elements!



20©2020 Check Point Software Technologies Ltd. 

Turning loop into recursion

template <class Tuple, size_t N>

struct tuple_forward_loop

{

template <typename Callable>

static void invoke(Tuple &t, Callable &func)

{

tuple_forward_loop<Tuple, N-1>::invoke(func);

func(get<N-1>(t));

}

};



21©2020 Check Point Software Technologies Ltd. 

Stop condition

template <class Tuple>

struct tuple_forward_loop<Tuple, 0>

{

template <typename Callable>

static void invoke(Tuple &, Callable &) {}

};



22©2020 Check Point Software Technologies Ltd. 

Activation

template <typename Callable, class Tuple>

void iterate_forward(Callable &func, Tuple &t)

{

tuple_forward_loop<

tuple_size<Tuple>::value,

Tuple

>::invoke(t, func);

}



23©2020 Check Point Software Technologies Ltd. 

Syntactic sugar

template <typename Callable, class Tuple>

void iterate_forward(Tuple &t)

{

Callable func;

iterate_forward(func, t);

}



24©2020 Check Point Software Technologies Ltd. 

Putting it all together

struct printer

{

temlpate <typename Printable>

void operator()(const Printable &val) { cout << val << endl; }

}

tuple<int, float, string> my_tuple{17, 3.14, “my sharona”};

iterate_forward<printer>(my_tuple);

17

3.14

my sharona



25©2020 Check Point Software Technologies Ltd. 

Pretty print

struct pretty_printer

{

pretty_printer() { cout << “(“; }

~pretty_printer() { cout << “)” << endl }

temlpate <typename Printable>

void operator()(const Printable &val)

{

if (!first) cout << “, “;

cout << val;

first = false;

}

bool first = true;

};

(17, 3.14, my sharona)



26©2020 Check Point Software Technologies Ltd. 

Additional std::tuple related elements

Classes

• std::tuple_element

• std::uses_allocator

Functions

• std::forward_as_tuple

• std::tuple_cat

Constants

• std::ignore



27©2020 Check Point Software Technologies Ltd. 

Additional C++17 elements

• Improve deduction rules

• Use tuple as a set of parameters for function invocation

• std::apply

• std::make_from_tuple



28©2020 Check Point Software Technologies Ltd. 

• std::tuple is useful in replacing 
“trivial” structures

• There is still work to be done to 
make it more useful

Summary



29©2020 Check Point Software Technologies Ltd. 

THANK YOU


