&3] Check Point

SOFTWARE TECHNOLOGIES LTD

THE STD:: TUPLE CONTAINER

Why, When, and How

Noam Weiss

Agenda

 Historical Overview

« Case Study

« Main features of std::tuple

« Limitations of std::tuple (or why don’t we use it more)

« Honorable mentions

Brief History

- The std::tuple contain zero or more elements of potentially different
type

« Uses veridic templates
« Can be thought of as an extension of std::pair

- |t was Iintroduced, along with helpers, in C++11

- It was slightly enhanced in C++14, and more so in C++17

Case study

Suppose | have a function called query (..) and after invoking her |
want to know three things:

1. What answer did | receive
2. From whom did | receive the answer
3. And statistics such as how long it took, attempts made, and so on.

The problem is that a function can only return one element, so we
need to find a way to turn one into three.

OOOOOOOOOOOOOOOOOOOO

Solutions

There are three major categories of solutions to this problem:

1. Output parameters.
2. Side effects.
3. Wrapping several elements in a container.

The main advantage of the third option is that in the case of failure
there are no question as to the state of the output parameters or
side effects.

Solution template

std: :tuple<answer t, source t, stats t>

quary (...)
{

answer t answer;
source t sourcey;

stats t stats;

return std::tuple<answer t, source t, stats t>(answer, source, stats);

- Check Point

. SOFTWARE TECHNOLOGIES

Solution template

std: :tuple<answer t, source t, stats t>
quary (...)
{

answer t answer;

source t sourcey;

stats t stats;

return std::make tuple (answer, source, stats);

(=] Check Point

. SOFTWARE TECHNOLOGIES

Solution template

std: :tuple<answer t, source t, stats t> res = query(..);

/* Check i1f the answer i1s from a reliable source */

1f (std::get<l>(res).1is reliability at least(..)) {

(=] Check Point

- SOFTWARE TECHNOLOGIES

Solution template

std: :tuple<answer t, source t, stats t> res = query(..);

source t &source = std::get<l>(res);

/* Check i1f the answer i1s from a reliable source */

1f (source.is reliability at least(..))

Check Point

SRS SOFTWARE TECHNOLOGIES

Solution template

answer t answer;
source t source;
stats t stats;

std::tie(answer, source, stats) = query(..);

/* Check i1if the answer 1s from a reliable source */

1f (source.is reliability at least(..)) {

Check Point

SRS SOFTWARE TECHNOLOGIES

10

Solution template

answer t answer;
source t source;

stats t stats;

try {

std::tie (answer, source,

} catch(..) {
answer = ..;
source = ..;
stats = ..;

(=] Check Point

- SOFTWARE TECHNOLOGIES

stats)

query (..) ;

11

Solution template — C++17

auto [answer, source, stats] = query(..);

/* Check 1f the answer 1s from a reliable source */

1f (source.is reliability at least(..)) {

(=] Check Point

- SOFTWARE TECHNOLOGIES

12

std::tuple VS

std: :tuple<
answer t,
source t,

stats t

(=] Check Point

- SOFTWARE TECHNOLOGIES

. Struct

W

struct {

answer t first;

source t second;

stats t third;

Semantics.
Standardization.

Strict ordering.
Memory consumption.

13

The std::tuple

« Constructor

- Assignment
* Since C++20 returns constexpr

- SWap
* Also exists as an external function
« Since C++20 returns constexpr

OOOOOOOOOOOOOOOOOOOO

14

Basic support functions

std::make_tuple

std::tie

std::.get

Comparison operators

15

The std:.get

The std::get function is templated on a number I and tuple types
Types, and returns a reference to the element in the I-th position in
the tuple.

Since C++14 there Is a version that is templated on a specific type T
and tuple types Types. And returns a reference to the only element
of that type Iin the tuple.

std: :get<answer t>(res);

16

The std::tuple size
- Given a tuple, it gives its size

- Inherits from std:: integral _ constant

* Members
» value - static

 Methods

* operator std::size t

 operator () —since C++14
* Types
* value type
* type
- Since C++17 there is a helper definition

* temlpate <class T> inline constexpr std::size t tuple size v;

OOOOOOOOOOOOOOOOOOOO

17

Working with tuples

Lets say that we want to print the content of a tuple for debugging
purposes, and we assume that all the types are printable.

We would like to write some thing like this:

for (auto &elem : my tuple) { Won’t work, since

std::tuple doesn’t
std: :cout << elem << std::endar: have iterators!

OOOOOOOOOOOOOOOOOOOO

Working with tuples

size t my tuple size =

tuple size<decltype (my tuple)>::value;

for (size t 1 = 0; 1 < my tuple size; ++1) {

cout <<\?et<i>(mv tuple) << endl;

Template parameter must be

What type Is this? known at compile time!

We can’t Iterate over tuples due to the different types of
the elements!

OOOOOOOOOOOOOOOOOOOO

Turning loop Into recursion

template <class Tuple, size t N>
struct tuple forward loop
{
template <typename Callable>
static void 1invoke (Tuple &t, Callable &func)
{
tuple forward loop<Tuple, N-1>::invoke (func);
func (get<N-1>(t)) ;

}

20

Stop condition

template <class Tuple>
struct tuple forward loop<Tuple,
{

template <typename Callable>

static void 1invoke (Tuple &,

}

0>

Callable &)

{}

21

Activation

template <typename Callable, class Tuple>

void 1lterate forward(Callable &func,

{

tuple forward loop<
tuple size<Tuple>::value,
Tuple

>::1nvoke (t, func):;

Tuple &t)

22

Syntactic sugar

template <typename Callable, class Tuple>

vold 1lterate forward(Tuple &t)

{
Callable func;

iterate_forward(func, t);

OOOOOOOOOOOOOOOOOOOO

23

Putting it all together

struct printer

{

temlpate <typename Printable>

vold operator () (const Printable &val) { cout << val << endl; }

tuple<int, float, string> my tuple{l7, 3.14, “my sharona”};

iterate forward<printer>(my tuple);

17
3.14

my sharona

(=] Check Point

. SOFTWARE TECHNOLOGIES

24

Pretty print

struct pretty printer

{
pretty printer () { cout << “(%; }
~pretty printer () { cout << W)” << endl }
temlpate <typename Printable>

volid operator () (const Printable &val)

{

if (!first) cout << %, %,

14

cout << wval;

first = false;

bool first = true; (17, 3.14, my sharona)

s
(=] Check Point

25
58 SOFTWARE TECHNOLOGIES

Additional std::tuple related elements

Classes
* std::tuple_element
* std::uses_allocator

Functions
* std::forward_as_tuple
e std::tuple_cat

Constants
* std::ignore

OOOOOOOOOOOOOOOOOOOO

26

Additional C++17 elements

- Improve deduction rules

- Use tuple as a set of parameters for function invocation
* std::apply
 std::make_from_tuple

OOOOOOOOOOOOOOOOOOOO

27

Summary

e std::tuple is useful in replacing
“trivial” structures

e There iIs still work to be done to
make it more useful

28

&3] Check Point

SOFTWARE TECHNOLOGIES LTD

THANK YOU

