
Package Management
for Android C++
by Alex Cohn
Why Prefab?

Android++ (reminder)

● Android OS is a Linux distribution according to the Linux Foundation

● Toolchain: clang version 8.0.7 (9.0.8 in next beta)

● Standard library: LLVM c++

● Build system: Gradle https://developer.android.com/studio/projects/add-native-code

● Java Native Interface libraries used in Java apps

● JNI binaries distribution: Maven AAR dependencies
https://developer.android.com/studio/projects/android-library

https://developer.android.com/studio/projects/add-native-code
https://developer.android.com/studio/projects/android-library

● Most developers only work in Kotlin or Java, but this may be not enough

● Most developers never leave Android Studio, but this may be not enough

● It’s easy to use a prebuilt JNI library, but this may be not enough

● It’s easy to add your C++ code to Android project, but this may be not enough

The challenge: third-party C++ dependencies!

Challenge++ for Android developers

● Need to maintain two build systems: ndk-build and CMake

● Need to support different build platforms, Windows being more painful

● Need to take care of library dependencies

○ Either bundle all dependencies in a huge source tree (and be locked out of updates)

○ Or link to dependencies and let the app developer suffer

We need an integrated and flexible package management system.

Challenge++ for library authors

https://android-developers.googleblog.com/2020/02/native-dependencies-in-android-studio-40.html
root/build.gradle

app/build.gradle

buildscript {
 dependencies {
 classpath 'com.android.tools.build:gradle:4.0.0-beta04'
 }
}

Prefab comes to rescue (1/3)

dependencies {
implementation 'com.arthenica:mobile-ffmpeg-prefab-min:4.3.1'

}

https://android-developers.googleblog.com/2020/02/native-dependencies-in-android-studio-40.html

CMakeLists.txt

Android.mk

LOCAL_SHARED_LIBRARIES += libavcodec # libavutil will be available, too
$(call import-module,prefab/ffmpeg)

Prefab comes to rescue (2/3)

find_package(ffmpeg REQUIRED CONFIG)

add_library(app SHARED app.cpp)

target_link_libraries(app ffmpeg::libavcodec)

app.cpp

This prefab package used make install to prepare the public headers for ffmpeg.

They are attached to libavutil library, but are available if you link any of the ffmpeg
libraries (e.g. libavcodec), because they all depend on libavutil and bring it in for
you.

Prefab comes to rescue (3/3)

#include "libavcodec/avcodec.h"

● Packages with public headers and compiled binaries, and maybe more

● Supports static and shared libraries

● Supports external dependencies (see how curl brings OpenSSL)

● Provides for matching by ABI (x86, ARM64-v8, etc.), OS version, C++ runtime

● Potentially may be extended to other platforms

● Open source Prefab tool provides build system integration (from AAR to CMake

or to ndk-build) is fully integrated into Android Gradle Plugin v.4.0.

Prefab features

https://github.com/android/ndk-samples/tree/master/prefab/curl-ssl
https://google.github.io/prefab/

Add following tweaks to your gradle.properties file:

Enables Prefab
android.enablePrefab=true
Work around https://issuetracker.google.com/149575364
android.enableParallelJsonGen=false
4.0.0 canary 9 defaults to Prefab 1.0.0-alpha3, which is not the latest.
android.prefabVersion=1.0.0-alpha5

While AGP 4.0 is not released

https://issuetracker.google.com/149575364

https://github.com/google/prefab/wiki/Package-List as of Feb 24

This is a list of known Prefab packages.

● com.android.ndk.thirdparty:curl
● com.android.ndk.thirdparty:jsoncpp
● com.android.ndk.thirdparty:openssl
● com.google.oboe:oboe

Not very impressive… yet.

You can add your favorites to the wish list of 27.

Package List

https://github.com/google/prefab/wiki/Package-List
https://github.com/google/prefab/issues?q=is%3Aopen+is%3Aissue+label%3A%22package+request%22

Google built some tools: https://android.googlesource.com/platform/tools/ndkports

Export from vcpkg to Prefab: https://github.com/microsoft/vcpkg/pull/10271

Yours truly has recently prefabbed ffmpeg and openh264. See also a small sample.

Don’t need Maven repo to develop: you can use a local AAR module

How to prefab your library

configurations.maybeCreate("default")

artifacts.add("default", file("../build/publications/ffmpeg.aar"))

https://android.googlesource.com/platform/tools/ndkports/+/refs/heads/master
https://github.com/microsoft/vcpkg/pull/10271
https://github.com/alexcohn/mobile-ffmpeg/tree/alexcohn-maven
https://github.com/alexcohn/openh264/tree/feature/prefab
https://github.com/alexcohn/ndk-samples/tree/prefab/hello-libs/prefab/hello-libs

Thank You (and some final remarks)

A Prefab-compatible AAR is easy to build: I’ve used (for different projects)

make, bash, CMake, gradle.

It would be nice (in the future) to be able to export your library as a polyglot

bundle for both Android library (for JNI consumers) and Prefab library (for

native consumers).

Special thanks to Dan Albert for inspiration!

https://en.wikipedia.org/wiki/Polyglot_(computing)

