
Prague Trip Report

The following were voted into the standard

● Modules are now in the language.
● Concepts are now in the language (P1851R0: Guidelines For snake_case Concept

Naming was suggested)
● Contracts were removed from C++20 and will be discussed for C++23.

● P1999R0: Process proposal: double-check evolutionary material via a Tentatively
Ready status - was accepted.

● A decision was made that from now on, with every paper proposed, there will be a
description of the UB added in it. (documenting core undefined or unspecified
behavior)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1851r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1999r0.html

P0592R4: To boldly suggest an overall plan for C++23

For C++23 Insert the following things to the standard:

● Library support for coroutines
● A modular standard library
● Executors
● Networking

Without a particular version, we should also make progress on:

● Reflection
● Pattern matching
● Contracts

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0592r4.html

P1863R1: ABI - Now or Never
P2028R0: What is ABI, and What Should WG21 Do About It?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1863r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2028r0.pdf

P1863R1: ABI - Now or Never
P2028R0: What is ABI, and What Should WG21 Do About It?

● The three options presented at Titus’s paper:
a. Break ABI on C++23
b. Prioritise not breaking ABI
c. Continue as is - consider ABI for each paper separately

● Polls:
a. The discussion of the claim that we should consider ABI break did not reach a

consensus.
b. The need to consider ABI break for every release was agreed on.
c. The strong notion was not to promise backward compatible ABI for all

versions in the future.
● P1881R1: Epochs: a backward-compatible language evolution mechanism - The

Epochs feature will currently be held back, will be discussed in the future.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1863r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2028r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1881r1.html

The following were voted to a positive directions, for C++23 or beyond

(LEWG)

● P0443R12: A Unified Executors Proposal for C++
● P2003R0: Fixing Internal and External Linkage Entities in Header Units
● P1678R2: Callbacks and Composition

(EWG)

● P1847R2: Make declaration order layout mandated
● P1468R3: Fixed-layout floating-point type aliases
● P1371R2: Pattern matching - was reviewed and changes where discussed.
● P1040R5: std::embed and #depend
● P1967R1: #embed - a simple, scannable preprocessor-based resource acquisition method

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r12.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2003r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1678r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1847r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1468r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1040r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1967r1.pdf

The following were voted to a positive directions, for C++23 or beyond

(SG14)

● P2013R0: Freestanding Language: Optional::operator new
● P0709R1: Zero-overhead deterministic exceptions: Throwing values took the next step,

with presenting: low_cost_deterministic_C_exceptions_for_embedded_systems

(SG21)

● P1774R2: Portable Assumptions
● P2064R0: Assumptions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2013r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0709r1.pdf
https://www.research.ed.ac.uk/portal/files/78829292/low_cost_deterministic_C_exceptions_for_embedded_systems.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1774r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf

P0443R12: A Unified Executors Proposal for C++

static_thread_pool pool(4);
auto exec = pool.executor();

auto future = std::async(exec , [] {
 std::cout << "Hello world, from a new execution agent!" << std::endl;
});

std::for_each(std::execution::par.on(exec), data.begin(), data.end(), func);

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r12.html

P2013R0: Freestanding Language: Optional ::operator new \ Ben Craig

● Motivation: On freestanding systems there is no right default way to have heap allocations,
therefore, we should define using default as ill formed.

● Suggestion: Without default heap storage, the presence of the replaceable allocation functions (i.e.
allocating ::operator new, including the nothrow_t and align_val_t overloads, single and array
forms) will be implementation defined.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2013r0.html

P1371R2: Pattern Matching /Sergei Murzin, Michael Park, David Sankel, Dan Sarginson

● Combination of papers: P1260R0, P1308R0
● Inspect rather than switch
● First Match rather than Best Match

● Implements:
a. Matching Integrals:

b. Matching Polymorphic Types:

● Statement rather than Expression
● Language rather than Library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1260r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1308r0.html

P1371R2: Pattern Matching /Sergei Murzin, Michael Park, David Sankel, Dan Sarginson
● Types of Patterns:

○ Primary Patterns:
■ Wildcard Pattern _: …
■ Identifier Pattern: x: …
■ Constant Pattern: 0: … (int zero = 0; … zero: …)

○ Compound Patterns:
■ Structured Binding Pattern: [0, y]: std::cout << "on y-axis";
■ Alternative Pattern: <C1> c1: strm << "got C1: " << c1; (C1 can be concept,

type, constant, auto)
■ Binding Pattern: <point> p at [x, y]: strm << "got point" << p;
■ Extractor Pattern: (email ? [address, domain]): std::cout << "got an email";
■ As Pattern

● Pattern Guard: [x, y] if test(x, y): std::cout << x << ',' << y << " passed";
● inspect constexpr
● Exhaustiveness Checking
● Patterns in range-based for loop

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf

P1774R2: Portable assumptions \ Timur Doumler

● Motivation:
a. All major compilers offer built-ins that give the programmer a way to allow the compiler to assume that a

given C++ expression is true (on run-time), and to optimise based on this assumption.
b. Assert is for debug mode, Assume is for release mode (and doesn’t evaluate expression - no side effects)

● Options exists on compilers:
VS: __assume(expression); Clang: __builtin_assume(expression); GCC: __builtin_unreachable();

● Improved assembly by using assumptions:

● Proposed syntex: compiler attribute: [[assume(expression)]] (with alternatives - Macro, language extensions)
(already in std: std::assume_aligned)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1774r2.pdf

P2064R0: Assumptions \ Herb Sutter

● Defined the difference between: assert(expr) and assume(expr):
● Assert ⇏ Assume:

a. Assert exists to be checked for false, whereas Assume must be guaranteed to never be false.
b. Assert evaluates its expression, whereas Assume never evaluates it.
c. Assert is a safe debugging aid provides informed error messages, and assume is for release, and if failed,

injects a run-time diagnostic into the caller’s local call site location.
d. Assert should be used pervasively by all programmers, whereas Assume is a dangerous power tool for

experts only, only in function bodies, and is in practice used ~1000 less frequently than Assert.
● Assert ⟂ ̸Assume:

a. Assuming on function declaration ([[pre assume: …]]) doesn’t make sense, since it’s not up to the writer.
● Assume ⇒ Assert:

a. Assumes are used on function bodies only, since it’s a call dependent.
b. Use assert on debug, assume on release to cover same conditions:

#ifdef NDEBUG
#define __unsafe_assume(b) __compiler_magic(b)

#else
#define __unsafe_assume(b) assert(b) #endif

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf

P2064R0: Assumptions \ Herb Sutter
● Assume should not be expressed as an Attribute (Referring to: P1774R2):

a. Awkward to write in the one place they should appear, which is as a statement

b. Allow be written outside of function bodies (on declarations), where not meaningful and actively harmful.

c. Harder to express that it Asserts its parameter as a precondition for test time diagnostics if contracts
(Asserts) are eventually also added as attributes, because we can’t write an attribute on an attribute.

d. (In contrast, unsafe_assume(bool b) [[pre: b]] is easy to write naturally, exactly documente the relationship)

e. Novel invention not supported by any existing practice in the past >20 years of commercial compilers.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1774r2.pdf

P2064R0: Assumptions \ Herb Sutter

Hierarchy of assumptions: As-if < UB < Assume(false) < Assume(expr) ≤ Miscompile

We can enable optimizations primarily via the as-if rule, which cannot change the observable behavior of a program.
The following are possible emulation:

● Undefined Behaviour: *(volatile int*)0 = 0xDEAD

● Assume(expr): __assume(0) , __builtin_unreachable()
Emulations: #define __hand_rolled_assume(expr) if(expr){}else{ *(volatile int*)0 = 0xDEAD; }

#define __hand_rolled_assume(expr) if(expr){}else{ const int i = 0; (int&)i=0xDEAD; }
#define __hand_rolled_assume(expr) if(expr){}else{ __builtin_unreachable(); }

● Assume(false): __assume(expr) , __builtin_assume(expr)
Emulations: #define __hand_rolled_assume_false() (*((volatile int*)0)=0xDEAD)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf

 Discussion:

1. Why not implement Assume(expr) in terms of Assume(false):
● __assum(0) is __builtin_unreachable() (and not assume data) (claimed by Hal Finkel & Eric Burmer’s)

2. Why not implement either Assume in terms of UB:
● It’s hard to know whether the programmer intended the UB to imply unreachability or fact injection, should

have specific syntax

int test(bool cnd1, bool cnd2)
{

int x;
 if (cnd1)

x = 5;
else if (cnd2)

x = 6;

return x;
}

else
__assume(0)

// warning C4701: ‘x’ potentially uninitialized

P2064R0: Assumptions \ Herb Sutter

Related paper by Hal Finkel, Generalized Dynamic Assumptions, 2015: N4425

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf

● Surveying real-world compilers: Cases and insights:
1. Sample survey: Actual branch elision on major compilers and -O levels

● A list of compiler behaviour test cases
2. Existing products’ usability limitations on using facts via time travel:

Violations of sequential consistency and causality in current practice
● Consider the following example:

P2064R0: Assumptions \ Herb Sutter

Related paper by Hal Finkel, Generalized Dynamic Assumptions, 2015: N4425

auto test(int x)
{

int local = 0;
local += x;
f(local); // f’s argument is ‘local’
int local2 = local; // return value is ‘local’
ASSUME(x==0);
return local2;

}

● return 0
● f is called with x value

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf

