
ABI
Or: Am Barely Interested

Core C++ Meetup, Feb. 2020

Yehezkel Bernat

YehezkelShB@gmail.com, @YehezkelShB

mailto:YehezkelShB@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

Intro

• You may have heard discussions about ABI, proposals, conference
talks, blog posts

• You may have heard that “this is why we can’t have nice things”

• We’ll see:
• What is ABI

• Where it affects us

• Why this is a real problem in the real world

ABI – What

API

• API – Application Programming Interface

• E.g. changing function name in a library breaks library’s API
compatibility

• API is about source compatibility

• “API-compatible change” means that no source code change is
required

• E.g. when changing the implementation of any entity (function or
type)

ABI

• ABI – Application Binary Interface

• ABI compatibility is about keeping things compatible without
recompiling

• Breaking API causes ABI breakage too, that’s trivial
• Except for very limited use-cases, maybe

• But there are many changes that break ABI even while keeping API
compatibility

Object size changes

• Changing a private field in a type

• No API break, it’s still source compatible, the public interface hasn’t
changed

• But it’s an ABI break, it isn’t binary compatible

• (Code examples)

Object size changes – example

Memory:

Object creator allocated

0x10 0x11 0x12 0x13 0x14 0x15 …

Object user accessing

Object fields change

• Similarly, changing the order or the meaning of the fields, breaks ABI

• This is source compatible change (API compatible) but ABI is broken

• Information will be swapped

• (Changing order of base classes is also considered as data order
change)

v1

struct Student {

std::string m_id;

std::string m_name;

};

v2
struct Student {

std::string m_name;

std::string m_id;

};

Platform differences

• Differences in object layout can come from various environment
settings

• 32/64 bit environments:
• Type sizes may differ

• Alignment requirements may differ, and thus the layout and padding

• Endianness
• Order of bytes inside the type

No-so-obvious way to change object size

• Adding the first virtual function to a type

• It adds vptr to the object
• In the common implementation

• Moving all the other fields further

char
a

char
b

With no virtual functions:

0x10 0x11 0x12 0x13 0x14 0x15 …

vptr vptr vptr vptr
char

a
char

b
With any virtual function:

(assuming 32-bit pointer)

0x10 0x11 0x12 0x13 0x14 0x15 …

Speaking of virtual functions…

• Adding a new member function anywhere or reordering member
functions doesn’t affect ABI
• Normal functions aren’t part of the object layout

• Adding a new virtual function, breaks ABI if it wasn’t added as the
last one in the type
• (Even if it’s never called!)

• Because it pushes all the rest of the pointers down in the vtbl

Adding a virtual function at the end is safe!

So adding a virtual function at the end is safe

• If the class is used as a base class, now it pushes further the virtual
pointer of the derived class

• Well, at least if the type is declared final we can add virtual
functions at the end
• But what’s the point in a virtual function if no one can override it?

ABI – What
Things that aren’t object size or meaning

Platform ABI considerations – Name mangling

• In C, the symbol name of a function in the compiled binary is simply
its name

• C++ compilers use name mangling to encode the function parameters
(and more) into the function name
• To support function overloading without complicating the linkers very much

• Change to function parameters or return type results in different
function name and ABI break
• Class name (for member functions) and namespace name are also embedded

there

• Similarly, type names are built to include the namespace (and then
used in turn to build the function name mangling)

Platform ABI considerations – Name mangling
Code MSVC gcc/Clang (Itanium ABI)

void f(char) ?f@@YAXD@Z _Z1fc

void f(int) ?f@@YAXH@Z _Z1fi

void g(const std::lock_guard<std
::mutex>&)

?g@@YAXAEBV?$lock_guard@Vmutex
@std@@@std@@@Z

_Z1gRKSt10lock_guardISt5mu
texE

void g(const std::scoped_lock<st
d::mutex>&)

?g@@YAXAEBV?$scoped_lock@Vmute
x@std@@@std@@@Z

_Z1gRKSt11scoped_lockIJSt5
mutexEE

std::lock_guard<std::mutex>::loc
k_guard(std::mutex&)

??0?$lock_guard@Vmutex@std@@@s
td@@QEAA@AEAVmutex@1@@Z

_ZNSt10lock_guardISt5mutex
EC2ERS0_

std::scoped_lock<std::mutex>::sc
oped_lock(std::mutex&)

??0?$scoped_lock@Vmutex@std@@@
std@@QEAA@AEAVmutex@1@@Z

_ZNSt11scoped_lockIJSt5mut
exEEC2ERS0_

https://gcc.godbolt.org/z/Vf-jd2

https://gcc.godbolt.org/z/Vf-jd2

Name mangling – good news and bad news

• The bad news are that each change to function signature or to type
definition breaks ABI

• The good news are that such a change is caught on link time
• Unlike C

• But more on this later

And more and more…

• Calling conventions like:

• In what order argument are passed
• right-to-left or left-to-right

• Where they are passed
• Registers? Which ones? Stack? Depends on argument type?

• Who cleans the stack frame
• The caller or the callee?

• (see MSVC stdcall vs. cdecl vs. fastcall)

What Does The Standard Say?

https://me.me/embed/i/cec6fb33d9f643519a16a0ea4948b200

https://me.me/embed/i/cec6fb33d9f643519a16a0ea4948b200

The standard doesn’t mention ABI!

• This is the common reaction

ODR – One Definition Rule

• Most (if not all) of the examples fall under ODR

• Here are relevant quotes from [basic.def.odr] (emphases mine)
• https://eel.is/c++draft/basic.def.odr#10

Every program shall contain exactly one definition of every non-inline
function or variable that is odr-used in that program outside of
a discarded statement; no diagnostic required.

The definition can appear explicitly in the program, it can be found in
the standard or a user-defined library, or (when appropriate) it is
implicitly defined

https://eel.is/c++draft/basic.def.odr#10
https://eel.is/c++draft/stmt.if#def:discarded_statement
https://eel.is/c++draft/basic.def.odr#10.sentence-1

IF-NDR

• Ill Formed; No Diagnostic Required

• Some ODR violations are hard or impossible to diagnose

• The standard accepts this by making ODR violation IF-NDR

Rejecting changes to the standard

• The standard still could decide on changes that would require ABI
break or make implementors life much harder when trying to keep
ABI stable

• Not doing such changes is also a way to say something about ABI
• (See Titus Winters’ paper linked in the references)

The standard doesn’t mention ABI! - Fixed

• To correct the common reaction

• The standard doesn’t demand any specific ABI
• Keeping platform and implementer freedom

• But it’s well aware of ABI

Nice Things We Can’t Have 

std::scoped_lock

• C++17 draft planned to change std::lock_guard to a variadic template

• NB comments mentioned this is an ABI break

• The change has been reverted, and a new type was introduced,
std::scoped_lock

• (See references at the end)

std::default_order

• Replacing std::less as the default for ordered associative containers

• Removed from C++17 draft due to NB comment that it’s an ABI break

• The original paper discussed ABI effects!
• But overlooked the one mentioned in the NB comment

• (See references at the end)

Zero-cost std::unique_ptr

• std::unique_ptr type was designed carefully to be a zero-cost
replacement to raw pointers…

• … for the object size

• ABIs still mandate passing object-with-non-trivial-d-tor on the stack

• While raw pointer is passed in a register

• Can’t be changed due to ABI break
• (there are also issues with destruction order, but let’s don’t get into it)

• (See Chandler Carruth’s CppCon talk; link in the references)

ABI – Where?

Where ABI break affects us and how?

• When name mangling changed:

• Linking objects or static libraries fails

• Loading dynamic libraries (DLL/so/dylib) – it’s a linkage failure that
happens in runtime (usually load-time)

• When name mangling isn’t changed (e.g. type content changed):

• Undefined Behavior™ in its worst!

• IF-NDR

ABI – How To Fix It

Inline namespaces!

• C++11 introduced inline namespaces

• Lib code: namespace MyLib { inline namespace v1 { class MyType; }}

• User code: MyLib::MyType;

• The compiler (and linker) sees it as MyLib::v1::MyType;

• When lib changed, it removes “inline” from v1 and adds:

• namespace MyLib { inline namespace v2 {
class MyType; /* shiny new one! */ }}

• Old user binaries keep loading v1 type from the DLL (the mangled
name hasn’t changed)

Inline namespaces 

• It does help the user code <-> type provider

• It doesn’t help when the type is used in ABI boundaries (passed
between two different binaries)

• Either it affects the user code name mangling…
• And then user code doesn’t link to 3rd party lib anymore

• … or it doesn’t affect it (type is used a member of user-defined type)
• And then, guess what?

• IF-NDR

Just recompile everything from source!

• (Probably part of the reasoning behind Titus Winters’ paper)

• If you can’t recompile everything you use, you are doomed anyway!
• (-random r/cpp rant)

• Is it?

Just recompile everything from source – RLY?

Binary distributions

• Distributing a binary lib becomes impossible
• We had enough with MSVC v10, v11, etc. * debug/release * static/dynamic

• How many variations of the same lib you are going to provide?

• How many variations of the same lib the Linux distro is going to provide?

• How many variations of the same lib the user has to have on the disk for
everything to play?

• How many variations of the same installer your favorite game company is
going to release?

• (How many variations of this question I’m going to bother you with?)

• And we still haven’t solved the usage of 3rd party libs

gcc and C++11

• C++11 required a few ABI incompatible changes

• std::string can’t use COW (copy on write)
• Complexity of write to a char must be O(1)

• Thread safety is required

• std::list must store the size
• std::list::size() must be O(1) action

• gcc (actually libstdc++) had to break ABI!

• It took a long time to find a solution

gcc and C++11 – abi_tag

• gcc introduced abi_tag

• An attribute that can be added to a type

• It becomes part of the mangling of it

• Kind of inline namespace…

• … with a twist

• The abi_tag is automatically applied to every function that returns
this type

• Warning when a type includes subobject with abi_tag but the type
itself isn’t tagged
• Making it viral

abi_tag – what it doesn’t solve

• It prevents silence break, everything becomes name mangling
incompatibility ☺

• But if the library doesn’t load, the user still suffers 
• (as discussed)

• Still can’t afford ABI change

Modules solve everything!!1!

• Nope 

• Modules don’t affect linkage

• They make it harder to create ODR violation in the same source

• They have no effect when two different DLLs use two versions of the
same module

References

References

• National Body comments for C++17 (see GB 61, FI 8, FI 18)
• http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4664.pdf

• Mangling dependent parameter types, or, what happened to
std::default_order (Arthur O’Dwyer’s blog)
• https://quuxplusone.github.io/blog/2019/08/08/why-default-order-failed/

• Ordered By Default (std::default_order proposal)
• http://wg21.link/p0181

• r/cpp comment on Prague trip report about ABI break in Gentoo
• https://www.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_co

mmittee_trip_report_c20_is/fhpcds8/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4664.pdf
https://quuxplusone.github.io/blog/2019/08/08/why-default-order-failed/
http://wg21.link/p0181
https://www.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpcds8/

References

• Titus Winters papers from 2020-01 pre-Prague mailing:
• ABI – Now or Never – http://wg21.link/p1863

• What is ABI, and What Should WG21 Do About It? – http://wg21.link/p2028

• CppCon 2019: Chandler Carruth “There Are No Zero-cost
Abstractions” - https://youtu.be/rHIkrotSwcc

• abi_tag, gcc documentation
• https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html

• Dual ABI (C++11 situation), gcc documentation
• https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

http://wg21.link/p1863
http://wg21.link/p2028
https://youtu.be/rHIkrotSwcc
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

