ABI

Or: Am Barely Interested a
Core C++ Meetup, Feb. 2020
Yehezkel Bernat
YehezkelShB@gmail.com, @YehezkelShB

QOO

mailto:YehezkelShB@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

Intro

* You may have heard discussions about ABI, proposals, conference
talks, blog posts

* You may have heard that “this is why we can’t have nice things”

* We'll see:
* What is ABI
* Where it affects us
* Why this is a real problem in the real world

ABI — What

AP]

* APl — Application Programming Interface

e E.g. changing function name in a library breaks library’s API
compatibility

* APl is about source compatibility

* “APl-compatible change” means that no source code change is
required

* E.g. when changing the implementation of any entity (function or
type)

ABI

* ABl — Application Binary Interface

* ABI compatibility is about keeping things compatible without
recompiling
* Breaking API causes ABI breakage too, that’s trivial
* Except for very limited use-cases, maybe

* But there are many changes that break ABI even while keeping API
compatibility

Object size changes

* Changing a private field in a type

* No API break, it’s still source compatible, the public interface hasn’t
changed

e But it’s an ABI break, it isn’t binary compatible

* (Code examples)

Object size changes — example

Ox10 Ox11 Ox12 0Ox13 O0x14 O0x15
Memary

\ }
|

Object creator allocated Object user accessing

Object fields change

 Similarly, changing the order or the meaning of the fields, breaks ABI

vl v2

struct Student { struct Student {
std::string m _id; std: :string m _name;
std::string m_name; std::string m _id;

}s }s

* This is source compatible change (APl compatible) but ABI is broken

* Information will be swapped

* (Changing order of base classes is also considered as data order
change)

Platform differences

* Differences in object layout can come from various environment
settings

e 32/64 bit environments:
* Type sizes may differ
* Alignment requirements may differ, and thus the layout and padding

* Endianness
* Order of bytes inside the type

No-so-obvious way to change object size

* Adding the first virtual function to a type

* [t adds vptr to the object
* In the common implementation

* Moving all the other fields further

0x10 Ox11 Ox12 0x13 O0x14 O0Ox15

char | char

With no virtual functions: b

0x10 Ox11 Ox12 O0x13 O0x14 Ox15

char | char

With any virtual function: vptr | vptr | vptr | vptr b

(assuming 32-bit pointer)

Speaking of virtual functions...

* Adding a new member function anywhere or reordering member
functions doesn’t affect ABI

* Normal functions aren’t part of the object layout

* Adding a new virtual function, breaks ABI if it wasn’t added as the
last one in the type

e (Even if it’s never called!)

* Because it pushes all the rest of the pointers down in the vtbl

Adding a virtual function at the end is safe!

F N
/{.
1

putactually nox
A = aS

So adding a virtual function at the end is safe

* If the class is used as a base class, now it pushes further the virtual
pointer of the derived class

* Well, at least if the type is declared final we can add virtual
functions at the end

e But what’s the pointin a virtual function if no one can override it?

ABI — What

Things that aren’t object size or meaning

Platform ABI considerations — Name mangling

* In C, the symbol name of a function in the compiled binary is simply
Its name

e C++ compilers use name mangling to encode the function parameters
(and more) into the function name

* To support function overloading without complicating the linkers very much

* Change to function parameters or return type results in different
function name and ABI break
e Class name (for member functions) and namespace name are also embedded
there

 Similarly, type names are built to include the namespace (and then
used in turn to build the function name mangling)

Platform ABI considerations — Name mangling

Code MSVC gcc/Clang (Itanium ABI)
void f(char) ?F@@YAXD@Z _Z1fc
void f(int) *F@@YAXH@Z _Z1f1i

void g(const std::lock guard<std ?g@@YAXAEBV?$lock guard@Vmutex Z1gRKStl1@lock guardISt5mu
s imutex>&) @stdEEE@s tdEEE@Z texE

void g(const std::scoped lock<st ?g@@YAXAEBV?$scoped lock@Vmute Z1gRKStllscoped lockIJSt5
d::mutex>&) X@std@E@s td@EE@Z mutexEE

std::lock guard<std::mutex>::loc ??0?%$lock guard@Vmutex@std@@@s _ZNStl@lock guardIStSmutex
k _guard(std: :mutex&) td@@QEAA@AEAVMUtex@1@@Z EC2ERSO

std::scoped _lock<std::mutex>::sc ??0?%scoped lock@Vmutex@std@@@ ZNStllscoped lockIJSt5mut
oped lock(std: :mutex&) std@@QEAA@AEAVmMuUtex@1@@Z exEEC2ERSO __

https://gcc.godbolt.org/z/Vf-jd2

https://gcc.godbolt.org/z/Vf-jd2

Name mangling — good news and bad news

* The bad news are that each change to function signature or to type
definition breaks ABI

* The good news are that such a change is caught on link time
e Unlike C
* But more on this later

And more and more...

* Calling conventions like:

* In what order argument are passed
* right-to-left or left-to-right

 Where they are passed

* Registers? Which ones? Stack? Depends on argument type?

* Who cleans the stack frame
 The caller or the callee?
* (see MSVC stdcall vs. cdecl vs. fastcall)

What Does The Standard Say?

E\IEHYBODY’ASKS "W‘IIAT
DOES TIIE HI)("*SAY

BUT NIIBOIIY'ASKS "HIIW

FAENRIRE R

DOES TIIE FOX FEElﬂ"

https://me.me/embed/i/cec6fb33d9f643519a16a0ea4948b200

https://me.me/embed/i/cec6fb33d9f643519a16a0ea4948b200

The standard doesn’t mention ABI!

* This is the common reaction

ODR — One Definition Rule

* Most (if not all) of the examples fall under ODR

* Here are relevant quotes from [basic.def.odr] (emphases mine)
* https://eel.is/c++draft/basic.def.odr#10

Every program shall contain exactly one definition of every non-inline
function or variable that 1s odr-used In that program outside of
a discarded statement; no diagnostic required.

The definition can appear explicitly in the program, it can be found In
the standard or a user-defined library, or (when appropriate) it is
implicitly defined

https://eel.is/c++draft/basic.def.odr#10
https://eel.is/c++draft/stmt.if#def:discarded_statement
https://eel.is/c++draft/basic.def.odr#10.sentence-1

IF-NDR

* |l Formed; No Diagnhostic Required
 Some ODR violations are hard or impossible to diagnose
* The standard accepts this by making ODR violation IF-NDR

Rejecting changes to the standard

* The standard still could decide on changes that would require ABI
break or make implementors life much harder when trying to keep
ABI stable

* Not doing such changes is also a way to say something about ABI
e (See Titus Winters’ paper linked in the references)

The standard doesn’t mention ABI! - Fixed

* To correct the common reaction

* The standard doesn’t demand any specific ABI
* Keeping platform and implementer freedom

e But it’s well aware of ABI

Nice Things We Can’t Have ®

std::scoped lock

* C++17 draft planned to change std::lock_guard to a variadic template
* NB comments mentioned this is an ABI break

* The change has been reverted, and a new type was introduced,
std::scoped_lock

* (See references at the end)

std::default_order

* Replacing std::less as the default for ordered associative containers
* Removed from C++17 draft due to NB comment that it’s an ABI break

* The original paper discussed ABI effects!
 But overlooked the one mentioned in the NB comment

* (See references at the end)

/ero-cost std::unique ptr

e std::unique_ptr type was designed carefully to be a zero-cost
replacement to raw pointers...

e ... for the object size
* ABIs still mandate passing object-with-non-trivial-d-tor on the stack
* While raw pointer is passed in a register

* Can’t be changed due to ABI break
* (there are also issues with destruction order, but let’s don’t get into it)

* (See Chandler Carruth’s CppCon talk; link in the references)

ABl — Where?

Where ABI break affects us and how?

* When name mangling changed:
* Linking objects or static libraries fails

* Loading dynamic libraries (DLL/so/dylib) —it’s a linkage failure that
happens in runtime (usually load-time)

* When name mangling isn’t changed (e.g. type content changed):
* Undefined Behavior™ in its worst!
* [F-NDR

ABl — How To Fix It

Inline namespaces!

 C++11 introduced inline namespaces

* Lib code: namespace MyLib {inline namespace v1 { class MyType; }}
e User code: MyLib::MyType;

* The compiler (and linker) sees it as MyLib::vl::MyType;

* When lib changed, it removes “inline” from v1 and adds:

* namespace MyLib { inline namespace v2 {
class MyType; /* shiny new one! */ }}

e Old user binaries keep loading v1 type from the DLL (the mangled
name hasn’t changed)

Inline namespaces ®

* It does help the user code <-> type provider

* It doesn’t help when the type is used in ABI boundaries (passed
between two different binaries)

* Either it affects the user code name mangling...
* And then user code doesn’t link to 3" party lib anymore

e ...or it doesn’t affect it (type is used a member of user-defined type)

* And then, guess what?
* IF-NDR

Just recompile everything from source!

* (Probably part of the reasoning behind Titus Winters’ paper)

* If you can’t recompile everything you use, you are doomed anyway!
* (-random r/cpp rant)

e |sit?

“»

Just recompile everything from source — RLY?

mpyne 5 points - 10 days ago

For me it is not a valid argument. If someone is not able to recompile
whole code, he is s*x*x'ed no matter the ABI stability.

Have none of you ever used Linux distributions where you actually have to
recompile code?

[use Gentoo, and have since 2006, and ABI breakages, while theoretically
resolvable by "just compiling affected software", are often nightmarish
affairs.

Binary distributions

* Distributing a binary lib becomes impossible
* We had enough with MSVC v10, v11, etc. * debug/release * static/dynamic

* How many variations of the same lib you are going to provide?
 How many variations of the same lib the Linux distro is going to provide?

* How many variations of the same lib the user has to have on the disk for
everything to play?

* How many variations of the same installer your favorite game company is
going to release?

* (How many variations of this question I’'m going to bother you with?)
* And we still haven’t solved the usage of 3™ party libs

ogcc and C++11

* C++11 required a few ABI incompatible changes

e std::string can’t use COW (copy on write)
* Complexity of write to a char must be O(1)
* Thread safety is required

e std::list must store the size
e std::list::size() must be O(1) action

e gcc (actually libstdc++) had to break ABI!
* |t took a long time to find a solution

gcc and C++11 — abi tag

e gcc introduced abi_tag

* An attribute that can be added to a type
* It becomes part of the mangling of it

e Kind of inline namespace...

* ... With a twist

* The abi_tag is automatically applied to every function that returns
this type

* Warning when a type includes subobject with abi_tag but the type
itself isn’t tagged

* Making it viral

abi tag —what it doesn’t solve

* It prevents silence break, everything becomes name mangling
incompatibility ©

 But if the library doesn’t load, the user still suffers ®
 (as discussed)

e Still can’t afford ABI change

Modules solve everything!!1!

* Nope ®
* Modules don’t affect linkage
* They make it harder to create ODR violation in the same source

* They have no effect when two different DLLs use two versions of the
same module

References

References

* National Body comments for C++17 (see GB 61, FI 8, FI 18)
e http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2017/n4664.pdf

* Mangling dependent parameter types, or, what happened to
std::default_order (Arthur O’'Dwyer’s blog)

* https://quuxplusone.github.io/blog/2019/08/08/why-default-order-failed/

* Ordered By Default (std::default_order proposal)
e http://wg21.link/p0181

* r/cpp comment on Prague trip report about ABI break in Gentoo

* https://www.reddit.com/r/cpp/comments/f47x40/202002 prague iso C co
mmittee trip report c20 is/fhpcds8/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4664.pdf
https://quuxplusone.github.io/blog/2019/08/08/why-default-order-failed/
http://wg21.link/p0181
https://www.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpcds8/

References

 Titus Winters papers from 2020-01 pre-Prague mailing:
* ABI— Now or Never — http://wg21.link/p1863
 What is ABI, and What Should WG21 Do About It? — http://wg21.link/p2028

* CppCon 2019: Chandler Carruth “There Are No Zero-cost
Abstractions” - https://voutu.be/rHIkrotSwcc

* abi_tag, gcc documentation
* https://gcc.gnu.org/onlinedocs/gcc/C 002b 002b-Attributes.html

e Dual ABI (C++11 situation), gcc documentation
* https://gcc.gnu.org/onlinedocs/libstdc++/manual/using dual abi.html

http://wg21.link/p1863
http://wg21.link/p2028
https://youtu.be/rHIkrotSwcc
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

