
Pre-Prague Highlight Papers
Inbal Levi

P1641R2: Freestanding Library: Rewording the Status Quo / Ben Craig

● __cpp_lib_atomic_flag_test

● __cpp_lib_atomic_float

● __cpp_lib_atomic_is_always_lock_free

● __cpp_lib_atomic_ref

● __cpp_lib_atomic_value_initialization

● __cpp_lib_atomic_wait

● __cpp_lib_bit_cast

● __cpp_lib_bitops

● __cpp_lib_bool_constant

● __cpp_lib_bounded_array_traits

● __cpp_lib_byte

● __cpp_lib_char8_t

● __cpp_lib_concepts

● __cpp_lib_destroying_delete

● __cpp_lib_endian

● __cpp_lib_hardware_interference_size

● __cpp_lib_has_unique_object_representati

ons

● __cpp_lib_int_pow2

● __cpp_lib_integral_constant_callable

● __cpp_lib_is_aggregate

● __cpp_lib_is_constant_evaluated

● __cpp_lib_is_final

● __cpp_lib_is_invocable

● __cpp_lib_is_layout_compatible

● __cpp_lib_is_null_pointer

● __cpp_lib_is_pointer_interconvertible

● __cpp_lib_is_swappable

● __cpp_lib_launder

● __cpp_lib_logical_traits

● __cpp_lib_nothrow_convertible

● __cpp_lib_remove_cvref

● __cpp_lib_result_of_sfinae

● __cpp_lib_source_location

● __cpp_lib_three_way_comparison

● __cpp_lib_transformation_trait_aliases

● __cpp_lib_type_identity

● __cpp_lib_type_trait_variable_templates

● __cpp_lib_uncaught_exceptions

● __cpp_lib_void_t

● Adding macro for separating freestanding implementation:

#define __cpp_lib_freestanding 202001L // freestanding only

● Add: //freestanding only comment to the following:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1641r2.html

P1642R2: Freestanding Library: Easy [utilities], [ranges], and [iterators] / Ben Craig

● Adding feature test macro: __cpp_lib_freestanding_iterator

● Add to freestanding: <utility>, <tuple>, <ratio>

● Add the following parts from <memory>: pointer_traits, to_address, align, assume_aligned, allocator_arg_t, allocator_arg,

uses_allocator, uses_allocator_v, uses_allocator_construction_args, allocator_traits, [specialized.algorithms] (This includes the

algorithms in the ranges namespace), default_delete, unique_ptr, unique_ptr overload of swap, relational operators (including three-

way / spaceship) involving unique_ptr, hash, unique_ptr specialization of hash, atomic

● Add <functional> Except: bad_function_call, function, function overloads of swap, function overloads of operator==,

boyer_moore_searcher, boyer_moore_horspool_searcher

● Add <iterator> Except: istream_iterator and associated comparison operators, ostream_iterator, istreambuf_iterator and associated

comparison operators, ostreambuf_iterator

● Add <ranges> except: basic_istream_view, istream_view

● From <version>, make freestanding:

● __cpp_lib_addressof_constexpr

● __cpp_lib_allocator_traits_is_always_equal

● __cpp_lib_apply

● __cpp_lib_as_const

● __cpp_lib_assume_aligned

● __cpp_lib_atomic_value_initialization

● __cpp_lib_bind_front

● __cpp_lib_constexpr_functional

● __cpp_lib_constexpr_iterator

● __cpp_lib_constexpr_memory

● __cpp_lib_constexpr_tuple

● __cpp_lib_constexpr_utility

● __cpp_lib_exchange_function

● __cpp_lib_integer_sequence

● __cpp_lib_invoke

● __cpp_lib_make_from_tuple

● __cpp_lib_make_reverse_iterator

● __cpp_lib_nonmember_container_access

● __cpp_lib_not_fn

● __cpp_lib_null_iterators

● __cpp_lib_ssize

● __cpp_lib_to_address

● __cpp_lib_transparent_operators

● __cpp_lib_tuple_element_t

● __cpp_lib_tuples_by_type

● __cpp_lib_unwrap_ref

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1642r2.html

P2013R0: Freestanding Language: Optional ::operator new \ Ben Craig

● Motivation: On freestanding systems, including linux kernel, there is no right default way to have heap

allocations, therefore, we should define using default as ill formed.

● Suggestion: on freestanding systems without default heap storage, the presence of the replaceable allocation

functions (i.e. allocating ::operator new, including the nothrow_t and align_val_t overloads, single and array

forms) will be implementation defined.

● Note: The C++20 freestanding library does not include allocators. [P1642R1] proposes adding allocator

machinery to freestanding, but doesn’t add std::allocator itself.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2013r0.html
http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2013r0.html#biblio-p1642r1

P0447R10: Introduction of std::colony to the standard library \ Matt Bentley

● Smart large-memory-class vector-like type:

a. Insert to full: by linking to a new block, which keeps locality and therefore cache (unlike std::list) and evoid large-scale copy

b. Delete: by marking as free, managed using free-list

Insert: Delete:

● Performance:
■ Insert (single): O(1) amortised

■ Insert (multiple): O(N) amortised

■ Erase (single): O(1) amortised

■ Erase (multiple):

i. non-trivially-destructible types: O(N) amortised

ii. trivially-destructible types: O(1) - O(N) amortised ~O(logN) average

■ std::find: O(N)

■ splice: O(1)

■ Iterator operators ++ and --: O(1) amortised

■ begin()/end(): O(1)

■ advance/next/prev: O(1) - O(N) ~O(log N) average

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0447r10.html

P0447R10: Introduction of std::colony to the standard library \ Matt Bentley

colony Insertion Erasure Iteration Read

Insertion No No No Yes

Erasure No No No Mostly*

Iteration No No Yes Yes

Read Yes Mostly* Yes Yes

● Implementation highlights:

● Meets: Container, AllocatorAwareContainer, ReversibleContainer

● Iteration class

● Pointer stability

● Thread safe guarantees :

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0447r10.html
https://en.cppreference.com/w/cpp/named_req/Container
https://en.cppreference.com/w/cpp/named_req/AllocatorAwareContainer
https://en.cppreference.com/w/cpp/named_req/ReversibleContainer

P0447R10: Introduction of std::colony to the standard library \ Matt Bentley

single element iterator insert (value_type &val)

fill iterator insert (size_type n, value_type &val)

range template <class InputIterator>

iterator insert (InputIterator first, InputIterator last)

move iterator insert (value_type&& val)

initializer list iterator insert (std::initializer_list<value_type> il)

● Insert:

single element iterator erase(const_iterator it)

range void erase(const_iterator first, const_iterator last)

● Erase

bool empty()

size_type size()

size_type max_size()

size_type capacity()

void clear()

void change_group_sizes(Skipfield_type min_group_size, Skipfield_type max_group_size)

void change_minimum_group_size(Skipfield_type min_group_size)

void change_maximum_group_size(Skipfield_type min_group_size)

void reinitialize(Skipfield_type min_group_size, Skipfield_type max_group_size)

void swap(colony &source)

void sort();

void splice(colony &source)

iterator begin(), iterator end(), const_iterator cbegin(), const_iterator cend()

reverse_iterator rbegin(), reverse_iterator rend(), const_reverse_iterator crbegin(), const_reverse_iterator crend()

iterator get_iterator_from_pointer(element_pointer_type the_pointer)

size_type get_index_from_iterator(iterator/const_iterator &the_iterator) (slow)

size_type get_index_from_reverse_iterator(reverse_iterator/const_reverse_iterator &the_iterator) (slow)

iterator get_iterator_from_index(size_type index) (slow)

allocator_type get_allocator()

● Member functions: ● Interface functions:

● Free functions:

void swap(colony &A, source &B)

template <iterator_type> void advance(iterator_type iterator, distance_type distance)

template <iterator_type> iterator_type next(iterator_type &iterator, distance_type distance)

template <iterator_type> iterator_type prev(iterator_type &iterator, distance_type distance)

template <iterator_type> difference_type distance(iterator_type &first, iterator_type &last)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0447r10.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

JIT Downsides:

- Compiling the specialization

- Memory overhead

- Runtime dispatch (optional)

- No Pre-runtime optimizations

JIT Upsides:

- Shorter compilation time

- Compile only what you use

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

The solution: [[clang::jit]]:

● Marked templated functions will be instantiated JIT (triggered by call / address taking)

● Doesn’t access file system during the program (for portability & performance)

● Doesn’t access external code during program runtime (doesn’t run compiler)

● Use only information stored in the binary file

● Compile original version AoT, and additional types, if needed, on runtime

● Type information for the JIT types is unavailable (decltype(auto)

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

From (April 2019): https://arxiv.org/pdf/1904.08555.pdf

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html
https://arxiv.org/pdf/1904.08555.pdf

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

● Header: <dynamic_instantiation>: #include <source_location>

#include <string>

namespace std {

struct diagnostic;

}

● Class: diagnostics: namespace std {

struct diagnostic {

const std::string &message() const;

const std::source_location &location() const;

};

}

Return lvalue which meets: Cpp17CopyConstructible, Cpp17CopyAssignable, and Cpp17Destructible

● Operator: dynamic_function_template_instantiation < id-expression > (expression-list_opt)

Return lvalue which meets: Cpp17MoveConstructible, Cpp17MoveAssignable, and Cpp17Destructible

● Operator: dynamic_template_argument < template-argument ..._opt >

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

● Suggests to add infrastructure for JIT ([[clang::jit]] style), by adding:

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

for (auto &W : foo_TI.warnings()) {

std::cerr << "warning: " << W.message()<<’\n’;

}

if (foo_TI) {

foo_TI(j);

} else {

std::cerr << "compilation failed!\n";

for (auto &W : foo_TI.errors()) {

std::cerr << "error: " << W.message() << "\n";

}

}

template <typename T, int I>

void foo(int a) {

std::cout << "I was compiled at runtime, I = " << I << "\n";

std::cout << "I was compiled at runtime, sizeof(T) = " << sizeof(T) << "\n";

}

...

template <int J>

struct A { };

...

auto A_tid = dynamic_template_argument<A>;

auto A5 = A_tid.compose(5);

int i = ..., j = ...;

auto foo_TI = dynamic_function_template_instantiation<foo>(A5, i);

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

Compile time:

Runtime:

double

size = 3

double

size = 7

double

size = 16

Time over Base

JIT Only 0.92s

(AoT) Single Specialization (double, size = 16) 2.37s

(AoT) Single Specialization (double, size = 7) 0.72s

(AoT) Single Specialization (double, size = 3) 0.62s

(AoT) Single Specialization (double, size = 1) 0.37s

(AoT) Two Specializations (double, size = 16) and (double, 7) 3.12s

Generic AoT Only (three floating-point types with dispatch) 7.12s

Generic AoT Only (double only) 2.72s

Nothing (just the includes and a main function) -

JIT 1.0s

Single Specialization 1.01s

AoT 8.05s

JIT 8.34s

Single Specialization 8.45s

AoT 20s

JIT 35.3s

Single Specialization 35.1s

AoT 36.2s

Eigen library instantiation of metrixes:

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

● Issues from the paper:

1. How to indicate that the feature isn’t available (feature macro, constexpr function, both, something else)?

1. Restriction on overloaded function templates - how to relax (optional parenthesized type list after the id?)

1. Statefulness of the instantiation process - the result of friend injection persist across different evaluations?

1. How to provide additional compilation implementation information (e.g., compiler-optimization flags)?

1. How to provide ability to save/restore the compilation state of an instantiations (into / out of a stream)?

1. How to expose result types of the operators named types provided? Header file?

1. Should dynamic_template_argument and typeid be unified in some way?

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1708R2: Simple Statistical Functions \ Michael Wong, Micheal Chiu, Richard Dosselmann, Eric

Niebler, Phillip Ratzlof, Vincent Reverdy

Suggests adding to <numerics> the following, as part of a stats class holds information on the container:

● Mean: µ or ¯x: (on linear run-time)

● Median: (without sorting, in linear time using the quickselect algorithm)

● Mode: value having the highest frequency (can be performed in linear time by counting consecutive (repeated) values)

● Standard Deviation: (computed in a a single pass) Population (σ):

sample (s):

● Variance: (computed in a a single pass) Population: sample:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1708r2.pdf

P1708R2: Simple Statistical Functions \ Michael Wong, Micheal Chiu, Richard Dosselmann, Eric

Niebler, Phillip Ratzlof, Vincent Reverdy

template<typename T = double, typename Allocator = allocator<T>>

// ... requires ...

class stats {

public:

constexpr stats() noexcept; /* construction/destruction */

constexpr stats(int m);

constexpr stats(const stats& other);

constexpr stats(stats&& other);

stats& operator=(const stats& other);

stats& operator=(stats&& other);

~stats() = default;

template<typename ForwardIt> /* calculation */

// ... requires ...

void calc(ForwardIt first, ForwardIt last); /* non template */

template<typename ForwardIt, typename UnaryPredicate>

// ... requires ...

void calc(ForwardIt first, ForwardIt last, UnaryPredicate p);

void calc(range r);

void calc(range r, UnaryPredicate p);

/* UnaryPredicate - metrics */

static const int metric_mean = 0b0000001;

static const int metric_median = 0b0000010;

static const int metric_mode = 0b0000100;

static const int metric_population_stddev = 0b0001000;

static const int metric_sample_stddev = 0b0010000;

static const int metric_population_var = 0b0100000;

static const int metric_sample_var = 0b1000000;

static const int metric_all = 0b1111111;

void metrics(int m);

constexpr int metrics() const noexcept;

constexpr T mean() const noexcept;

tuple<bool,T,T> median() const noexcept;

constexpr std::list<T> mode() const noexcept;

constexpr T population_stddev() const noexcept;

constexpr T sample_stddev() const noexcept;

constexpr T population_var() const noexcept;

constexpr T sample_var() const noexcept;

};

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1708r2.pdf

P1774R2: Portable assumptions \ Timur Doumler

● Motivation:

a. All major compilers offer built-ins that give the programmer a way to allow the compiler to assume that a

given C++ expression is true (on run-time), and to optimise based on this assumption.

b. Assert is for debug mode, Assume is for release mode (and doesn’t evaluate expression - no side effects)

● Options exists on compilers:

VS: __assume(expression); Clang: __builtin_assume(expression); GCC: __builtin_unreachable();

● Improved assembly by using assumptions:

● Proposed syntex: compiler attribute: [[assume(expression)]] (with alternatives - Macro, language extensions)

(already in std: std::assume_aligned)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1774r2.pdf

P2064R0: Assumptions \ Herb Sutter

● Defined the difference between: assert(expr) and assume(expr):

● Assert ⇏Assume:

a. Assert exists to be checked for false, whereas Assume must be guaranteed to never be false.

b. Assert evaluates its expression, whereas Assume never evaluates it.

c. Assert is a safe debugging aid provides informed error messages, and assume is for release, and if

failed, injects a run-time diagnostic into the caller’s local call site location.

d. Assert should be used pervasively by all programmers, whereas Assume is a dangerous power tool for

experts only, only in function bodies, and is in practice used ~1000 less frequently than Assert.

● Assert ⟂̸ Assume:

a. Assuming on function declaration ([[pre assume: …]]) doesn’t make sense, since it’s not up to the writer.

● Assume ⇒Assert:

a. Assumes are used on function bodies only, since it’s a call dependent.

b. Use assert on debug, assume on release to cover same conditions:

#ifdef NDEBUG

#define __unsafe_assume(b) __compiler_magic(b)

#else

#define __unsafe_assume(b) assert(b) #endif

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf

P2064R0: Assumptions \ Herb Sutter

● Assume should not be expressed as an Attribute (Referring to: P1774R2):

a. Awkward to write in the one place they should appear, which is as a statement

a. Allow be written outside of function bodies (on declarations), where not meaningful and actively harmful.

a. Harder to express that it Asserts its parameter as a precondition for test time diagnostics if contracts

(Asserts) are eventually also added as attributes, because we can’t write an attribute on an attribute.

a. (In contrast, unsafe_assume(bool b) [[pre: b]] is easy to write naturally, exactly documente the relationship)

a. Novel invention not supported by any existing practice in the past >20 years of commercial compilers.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1774r2.pdf

P2064R0: Assumptions \ Herb Sutter

Hierarchy of assumptions: As-if < UB < Assume(false) < Assume(expr) ≤ Miscompile

We can enable optimizations primarily via the as-if rule, which cannot change the observable behavior of a

program. The following are possible emulation:

● Undefined Behaviour: *(volatile int*)0 = 0xDEAD

● Assume(expr): __assume(0) , __builtin_unreachable()

Emulations: #define __hand_rolled_assume(expr) if(expr){}else{ *(volatile int*)0

= 0xDEAD; }

#define __hand_rolled_assume(expr) if(expr){}else{ const int i = 0;

(int&)i=0xDEAD; }

#define __hand_rolled_assume(expr) if(expr){}else{ __builtin_unreachable(); }

● Assume(false): __assume(expr) , __builtin_assume(expr)

Emulations: #define __hand_rolled_assume_false() (*((volatile int*)0)=0xDEAD)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf

Discussion:

1. Why not implement Assume(expr) in terms of Assume(false):

● __assum(0) is __builtin_unreachable() (and not assume data) (claimed by Hal Finkel & Eric Burmer’s)

1. Why not implement either Assume in terms of UB:

● It’s hard to know whether the programmer intended the UB to imply unreachability or fact injection, should

have specific syntax

int test(bool cnd1, bool cnd2)

{

int x;

if (cnd1)

x = 5;

else if (cnd2)

x = 6;

return x;

}

else

__assume(0)

// warning C4701: ‘x’ potentially uninitialized

P2064R0: Assumptions \ Herb Sutter

Related paper by Hal Finkel, Generalized Dynamic Assumptions, 2015: N4425

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf

● Surveying real-world compilers: Cases and insights:

1. Sample survey: Actual branch elision on major compilers and -O levels

● A list of compiler behaviour test cases

1. Existing products’ usability limitations on using facts via time travel:

Violations of sequential consistency and causality in current practice

● Consider the following example:

P2064R0: Assumptions \ Herb Sutter

Related paper by Hal Finkel, Generalized Dynamic Assumptions, 2015: N4425

auto test(int x)

{

int local = 0;

local += x;

f(local); // f’s argument is

‘local’

int local2 = local; // return value is ‘local’

ASSUME(x==0);

return local2;

}
● return 0

● f is called with x value

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf

P1795R1: System topology discovery for heterogeneous & distributed computing \ Gordon Brown,

Ruyman Reyes, Michael Wong, Mark Hoemmen, Jeff Hammond, Tom Scogland, Domagoj Šarić

● Separate proposals for high-level interface and one for the low-level interfaces. (this is the low level one)

● Define abstract properties of system architectures and topology that are not tied to any specific hardware,

Including:

○ a hierarchy depth-based view

○ a memory-centric view

○ network-centric view.

● Provide interface for querying properties of an execution resource, including relative affinity (זיקה) properties.

binding execution agents and initialization of data.

● Examples of resources:

○ many-core CPUs, GPUs, FPGAs and DSPs to specifically designed vision and machine learning

processors

○ memory modules

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1795r1.html

P1795R1: System topology discovery for heterogeneous & distributed computing \ Gordon Brown,

Ruyman Reyes, Michael Wong, Mark Hoemmen, Jeff Hammond, Tom Scogland, Domagoj Šarić

○ Header: <system>:

○ Class: <system_topology>

○ Class: <system_resource>

○ Free functions:

■ this_system::discover_topology

■ Template function: template <class T>

to-be-decided<system_resource> traverse_topology(const

system_topology &, const T &) noexcept;

namespace experimental {

class system_topology {

system_topology() = delete;

};

class system_resource {

/* to be defined */

};

template <class T>

to-be-decided<system_resource> traverse_topology(const system_topology &, const T &) noexcept;

/* this_system::discover_topology */

namespace this_system {

system_topology discover_topology();

} // namespace this_system

} // experimental

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1795r1.html

P2004R0: Numbers and their Scopes \ Antony Polukhin

● Suggest separating evolving SG6 work from previous papers:

1. P0101 was providing the "Introduction on SG6" and "Design Principles".

2. P1889 is for design. Proposed scopes are:

3. New numeric types that are widely useful and were already discussed

4. Basic building blocks for implementing new numeric types on top of build-in types

5. Minimal and consistent functionality to make the introduced types and functions usable for basic use-cases

● Newer ideas will be on different papers (in order to separate working process from the already accepted ideas)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2004r0.html

P1371R2: Pattern Matching /Sergei Murzin, Michael Park, David Sankel, Dan Sarginson

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf

● Suggests to add: optional<T&>

object_ptr<T> const

std::optional<reference_wrapper<T>>

object_ptr<T>

P2070R0: A case for optional and object_ptr \ Peter Sommerlad, Anthony Williams, Michael Wong, Jan

Babst

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2070r0.pdf

