Pre-Prague Highlight Papers

Inbal Levi

P1641R2: Freestanding Library: Rewording the Status Quo / Ben Craig

e Adding macro for separating freestanding implementation:
#define __cpp_lib_freestanding 202001L // freestanding only

e Add: //freestanding only comment to the following:
e cpp_lib_atomic_flag_test e _ cpp_lib_destroying_delete e _ cpp_lib_is_swappable
e cpp_lib_atomic float e cpp_lib_endian e cpp_lib_launder
e cpp_lib_atomic_is_always lock free e cpp_lib_hardware_interference_size e cpp_lib_logical_traits
e cpp_lib_atomic_ref e cpp_lib_has unique_object_representati e cpp_lib_nothrow_convertible
] __cpp_lib_atomic_value_initialization ons ° __cpp_lib_remove_cvref
e cpp_lib_atomic_wait e cpp_lib_int_pow?2 e cpp_lib_result_of sfinae
e cpp_lib_bit cast e cpp_lib_integral_constant_callable e cpp_lib_source_location
e cpp_lib_bitops e cpp_lib_is_aggregate e cpp_lib_three_way comparison
e cpp_lib_bool constant e cpp_lib_is_constant_evaluated e cpp_lib_transformation_trait_aliases
e cpp_lib_bounded array_traits e _ cpp_lib_is_final e _ cpp_lib_type_identity
e cpp_lib_byte e _ cpp_lib_is_invocable e _ cpp_lib_type_trait_variable_templates
e cpp_lib_char8 t e cpp_lib_is_layout_compatible e cpp_lib_uncaught_exceptions
e cpp_lib_concepts e cpp_lib_is_null_pointer e cpp_lib_void_t
e _ cpp_lib_is_pointer_interconvertible

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1641r2.html

P1642R2: Freestanding Library: Easy [utilities], [ranges], and [iterators] / Ben Craig

e Adding feature test macro: _ cpp_lib_freestanding_iterator

e Add to freestanding: <utility>, <tuple>, <ratio>

e Add the following parts from <memory>: pointer_traits, to_address, align, assume_aligned, allocator_arg_t, allocator_arg,
uses_allocator, uses_allocator_v, uses_allocator_construction_args, allocator_traits, [specialized.algorithms] (This includes the
algorithms in the ranges namespace), default_delete, unique_ptr, unique_ptr overload of swap, relational operators (including three-
way / spaceship) involving unique_ptr, hash, unique_ptr specialization of hash, atomic

e Add <functional> Except: bad_function_call, function, function overloads of swap, function overloads of operator==,
boyer_moore_searcher, boyer_moore_horspool_searcher

e Add <iterator> Except: istream_iterator and associated comparison operators, ostream_iterator, istreambuf _iterator and associated
comparison operators, ostreambuf_iterator

e _Add <ranges> except: basic_istream_view, istream_view

e From <version>, make freestanding:

__cpp_lib_constexpr_tuple
__cpp_lib_constexpr_utility
__cpp_lib_exchange_function
__cpp_lib_integer_sequence
__cpp_lib_invoke
__cpp_lib_make_from_tuple
__cpp_lib_make_reverse_iterator
__cpp_lib_nonmember_container_access
__cpp_lib_not_fn
__cpp_lib_null_iterators

__cpp_lib_addressof_constexpr
__cpp_lib_allocator_traits_is_always_equal
__cpp_lib_apply

__cpp_lib_as_const
__cpp_lib_assume_aligned
__cpp_lib_atomic_value_initialization
__cpp_lib_bind_front
__cpp_lib_constexpr_functional
__cpp_lib_constexpr_iterator
__cpp_lib_constexpr_memory

__cpp_lib_ssize

__cpp_lib_to address
__cpp_lib_transparent_operators
__cpp_lib_tuple element t
__cpp_lib_tuples by _type
__cpp_lib_unwrap_ref

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1642r2.html

P2013R0: Freestanding Language: Optional ::operator new \ Ben Craig

e Motivation: On freestanding systems, including linux kernel, there is no right default way to have heap
allocations, therefore, we should define using default as ill formed.

e Suggestion: on freestanding systems without default heap storage, the presence of the replaceable allocation
functions (i.e. allocating ::operator new, including the nothrow_t and align_val_t overloads, single and array
forms) will be implementation defined.

e Note: The C++20 freestanding library does not include allocators. [P1642R1] proposes adding allocator
machinery to freestanding, but doesn’t add std::allocator itself.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2013r0.html
http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2013r0.html#biblio-p1642r1

P0447R10: Introduction of std::colony to the standard library \ Matt Bentley

Smart large-memory-class vector-like type:
Insert to full: by linking to a new block, which keeps locality and therefore cache (unlike std::list) and evoid large-scale copy

a.

b.
Insert:

Qriginal memory block (full)

Delete: by marking as free, managed using free-list

Original block is preserved and linked to a newly
allocated block which doubles the current size of colony.
New object is stored in the new block. Original memory block

| >~ 0l >

New inserted object
Delete this element

Performance:

Insert (single): O(1) amortised

Insert (multiple): O(N) amortised

Erase (single): O(1) amortised

Erase (multiple):
i. non-trivially-destructible types: O(N) amortised
ii. trivially-destructible types: O(1) - O(N) amortised ~O(logN) average

std::find: O(N)

splice: O(1)

Iterator operators ++ and --: O(1) amortised

begin()/end(): O(1)

advance/next/prev: O(1) - O(N) ~O(log N) average

Erased element is noted in the skipfield and an&InEte :

memory block's free-list (will be reused the next Tme an
element is inserted).

Subsequently the location will be skipped during iteration.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0447r10.html

Implementation highlights:

Meets: Container, AllocatorAwareContainer, ReversibleContainer

Iteration class
Pointer stability
Thread safe guarantees :

P0447R10: Introduction of std::colony to the standard library \ Matt Bentley

colony Insertion | Erasure | Iteration | Read
Insertion | No No No Yes
Erasure No No No Mostly*
Iteration No No Yes Yes
Read Yes Mostly* Yes Yes

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0447r10.html
https://en.cppreference.com/w/cpp/named_req/Container
https://en.cppreference.com/w/cpp/named_req/AllocatorAwareContainer
https://en.cppreference.com/w/cpp/named_req/ReversibleContainer

P0447R10: Introduction of std::colony to the standard library \ Matt Bentley

e Insert: e FErase
single element | iterator insert (value_type &val) single element | iterator erase(const_iterator it)
fill iterator insert (size_type n, value_type &val) range void erase(const_iterator first, const_iterator last)
range template <class Inputlterator>
iterator insert (Inputlterator first, Inputlterator last)
move iterator insert (value_type&& val)
initializer list iterator insert (std::initializer_list<value_type> il)

e Member functions:

bool empty()
size_type size()
size_type max_size()
size_type capacity()
void clear()

void change_g roup_siZes(SkipfieId_type min_group_size, Skipfield_type max_group_size)

void change_minimum_group_size(Skipfield_type min_group_size)

void change_maximum_group_size(Skipfield_type min_group_size)

void reinitialize(Skipfield_type min_group_size, Skipfield_type max_group_size)
void Swap(colony &source)

void sort();

void splice(colony &source)

e Interface functions:

iterator begin(), iterator end(), const_iterator cbegin(), const_iterator cend()

reverse_iterator rbegin(), reverse_iterator rend(), const_reverse_iterator crbegin(), const_reverse_iterator crend()
iterator get_iterator_from_pointer(element_pointer_type the_pointer)

size_type get_index_from_iterator(iterator/const_iterator &the_iterator) (slow)

size_type get_index_from_reverse_iterator(reverse_iterator/const_reverse_iterator &the_iterator) (slow)

iterator get_iterator_from_index(size_type index) (slow)

allocator_type get_allocator ()

e Free functions:

void Swap(colony &A, source &B)

template <iterator_type> void advance(iterator_type iterator, distance_type distance)
template <iterator_type> iterator_type next(iterator_type &iterator, distance_type distance)
template <iterator_type> iterator_type prev(iterator_type &iterator, distance_type distance)
template <iterator_type> difference_type distance(iterator_type &first, iterator_type &last)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0447r10.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

Specialization and Generic Programming
* Writing code to operate over abstract types

* There are essentially two approaches:

Generics (Runtime Dispatch)

(C++ Virtual Functions)

Weakly-typed languages (i.e., those using "boxed"

types) are over here for nearly all code.

Specialization

(C++ Templates)

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

JIT Downsides:

- Compiling the specialization
- Memory overhead

- Runtime dispatch (optional)

- No Pre-runtime optimizations

JIT Upsides:

- Shorter compilation time
- Compile only what you use

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

The solution: [[clang::jit]]:

Marked templated functions will be instantiated JIT (triggered by call / address taking)
Doesn’t access file system during the program (for portability & performance)

Doesn’t access external code during program runtime (doesn’t run compiler)

Use only information stored in the binary file

Compile original version AoT, and additional types, if needed, on runtime

Type information for the JIT types is unavailable (decltype(auto)

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

template <int x>

[[clang::jit]] void run() {

std :: cout << "Hello, World, I was compiled at runtime, x = " << x << "\n";

}

int main(int argc, char sargv[]) {
[int a = std::atoi(argv[1]);
run<a >();

}

struct F {
int 1;

double d;
}s

template <typename T>
[[clang :: jit]] void run() {
std :: cout << "I was compiled at runtime, sizeof(T) = " << sizeof(T) << "\n";

}

int main(int argc, char «~argv[]) {
std :: string t(argv[1]);]
run<t >();

}
From (April 2019): https://arxiv.org/pdf/1904.08555.pdf

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html
https://arxiv.org/pdf/1904.08555.pdf

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

e Suggests to add infrastructure for JIT ([[clang::jit]] style), by adding:

e Header: <dynamic_instantiation>: #include <source_location>
#include <string>
namespace std

struct diagnostic

e C(Class: diagnostics: namespace std

struct diagnostic
const std::string &message() const
const std::source_location &location() const

Return lvalue which meets: Cpp17CopyConstructible, Cpp17CopyAssignable, and Cpp17Destructible

e Operator: dynamic_function_template_instantiation < id-expression > (expression-list_opt)
Return lvalue which meets: Cpp17MoveConstructible, Cpp17MoveAssignable, and Cpp17Destructible

e Operator: dynamic_template_argument < template-argument ..._opt >

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

template <typename T, int I> for (auto &W : foo_Tl.warnings()) {

void foo(int a) { _ _ std::cerr << "warning: " << W.message()<<"\n’;
std::cout << "I was compiled at runtime, | =" << 1 <<"\n"; }
std::cout << "'l was compiled at runtime, sizeof(T) =" << sizeof(T) << "\n";

¥ if (foo_TI) {

- foo_TI(j);

template <int J> Lelse {

struct A { ; std::cerr << "compilation failed!\n";

auto A_tid = dynamic_template_argument<A>; for (auto &W : foo_Tl.errors()) {

auto A5 = A_tid.compose(s); std::cerr << "error: " << W.message() << "\n""

e : }

intir=..J]=..;

auto foo_TI = dynamic_function_template_instantiation<foo>(A5, i); }

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

Eigen library instantiation of metrixes:

Compile time:

Time over Base

JIT Only 0.92s
(AoT) Single Specialization (double, size = 16) 2.37s
(AoT) Single Specialization (double, size = 7) 0.72s
(AoT) Single Specialization (double, size = 3) 0.62s
(AoT) Single Specialization (double, size = 1) 0.37s
(AoT) Two Specializations (double, size = 16) and (double, 7) 3.12s
Generic AoT Only (three floating-point types with dispatch) 7.12s
Generic AoT Only (double only) 2.72s

Nothing (just the includes and a main function)

double

size=3

double

size=7

double

ci7ze — 1A

JIT 1.0s

Single Specialization 1.01s
AoT 8.05s
JT 8.34s
Single Specialization 8.45s
AoT 20s

JT 35.35
Single Specialization 35.1s
AoT 36.2s

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1609R3: C++ Should Support Just-in-Time Compilation \ Hal Finkel

e Issues from the paper:

1. How to indicate that the feature isn’t available (feature macro, constexpr function, both, something else)?
1. Restriction on overloaded function templates - how to relax (optional parenthesized type list after the id?)
1. Statefulness of the instantiation process - the result of friend injection persist across different evaluations?
1. How to provide additional compilation implementation information (e.g., compiler-optimization flags)?

1. How to provide ability to save/restore the compilation state of an instantiations (into / out of a stream)?

1. How to expose result types of the operators named types provided? Header file?

1. Should dynamic_template_argument and typeid be unified in some way?

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1609r3.html

P1708R2: Simple Statistical Functions \ Michael Wong, Micheal Chiu, Richard Dosselmann, Eric
Niebler, Phillip Ratzlof, Vincent Reverdy

Suggests adding to <numerics> the following, as part of a stats class holds information on the container:

n

_ _ _ 1
e Mean: por x: (onlinear run-time) - >_ %

i=1

e Median: (without sorting, in linear time using the quickselect algorithm)

e Mode: value having the highest frequency (can be performed in linear time by counting consecutive (repeated) values)

. . l mn R I n)
e Standard Deviation: (computed in a a single pass) Populatio d =~ > (@i — p?). J——,, — (@i —2)
i=]

sample (s): -

¥ .l

o2 g2
e Variance: (computed in a a single pass) Population: sample:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1708r2.pdf

P1708R2: Simple Statistical Functions \ Michael Wong, Micheal Chiu, Richard Dosselmann, Eric

Niebler, Phillip Ratzlof, Vincent Reverdy

template<typename T = double, typename Allocator = allocator<T>>

/I ... requires ...
class stats {
public:

constexpr stats() noexcept; /* construction/destruction */

constexpr stats(int m);

constexpr stats(const stats& other);
constexpr stats(stats&& other);
stats& operator=(const stats& other);
stats& operator=(stats&& other);
~stats() = default;

template<typename ForwardIt> [* calculation */
Il ... requires ...

void calc(Forwardlt first, Forwardlt last); /* non template */

template<typename Forwardlt, typename UnaryPredicate>
Il ... requires ...

void calc(Forwardlt first, Forwardlt last, UnaryPredicate p);
void calc(range r);

void calc(range r, UnaryPredicate p);

/* UnaryPredicate - metrics */

static const int metric_mean = 0b0000001;

static const int metric_median = 0b0000010;

static const int metric_mode = 0b0000100;

static const int metric_population_stddev = 0b0001000;
static const int metric_sample_stddev = 0b0010000;
static const int metric_population_var = 0b0100000;
static const int metric_sample_var = 0b1000000;

static const int metric_all = 0b1111111;

void metrics(int m);
constexpr int metrics() const noexcept;
constexpr T mean() const noexcept;

tuple<bool, T, T> median() const noexcept;
constexpr std::list<T> mode() const noexcept;
constexpr T population_stddev() const noexcept;
constexpr T sample_stddev() const noexcept;
constexpr T population_var() const noexcept;
constexpr T sample_var() const noexcept;

¥}

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1708r2.pdf

P1774R2: Portable assumptions \ Timur Doumler

Motivation:

a. All major compilers offer built-ins that give the programmer a way to allow the compiler to assume that a
given C++ expression is true (on run-time), and to optimise based on this assumption.
b. Assertis for debug mode, Assume is for release mode (and doesn’t evaluate expression - no side effects)

Options exists on compilers:

VS: assume(expression); Clang: _ builtin_assume(expression); GCC: _ builtin_unreachable();

Improved assembly by using assumptions:

int divide_by_32(int x) Without
{ mov
__builtin_assume(x >= 0); sar
return x/32; shr

} add
sar

ret

__builtin_assume: With __builtin_assume:
eax, edi mov eax, edi

eax, 31 shr eax, 5

eax, 27 ret

eax, edi

eax, 5

Proposed syntex: compiler attribute: [[assume(expression)]] (with alternatives - Macro, language extensions)

(already in std: std::assume_aligned)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1774r2.pdf

P2064R0: Assumptions \ Herb Sutter

e Defined the difference between: assert(expr) and assume(expr):
® Assert #» Assume:
a. Assert exists to be checked for false, whereas Assume must be guaranteed to never be false.
b. Assert evaluates its expression, whereas Assume never evaluates it.
c. Assertis a safe debugging aid provides informed error messages, and assume is for release, and if
failed, injects a run-time diagnostic into the caller’s local call site location.
d. Assert should be used pervasively by all programmers, whereas Assume is a dangerous power tool for
experts only, only in function bodies, and is in practice used ~1000 less frequently than Assert.
e Assert L/Assume:
a. Assuming on function declaration ([[pre assume: ...]]) doesn’t make sense, since it’s not up to the writer.
e Assume = Assert:
a. Assumes are used on function bodies only, since it’s a call dependent.
b. Use assert on debug, assume on release to cover same conditions:

#ifdef NDEBUG

#define __unsafe_assume(b) _ compiler_magic(b)
#else

#define __unsafe_assume(b) assert(b) #endif

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf

P2064R0: Assumptions \ Herb Sutter

e Assume should not be expressed as an Attribute (Referring to: P1774R2):

a. Awkward to write in the one place they should appear, which is as a statement
a. Allow be written outside of function bodies (on declarations), where not meaningful and actively harmful.

a. Harder to express that it Asserts its parameter as a precondition for test time diagnostics if contracts
(Asserts) are eventually also added as attributes, because we can’t write an attribute on an attribute.

a. (Incontrast, unsafe_assume(bool b) [[pre: b]] is easy to write naturally, exactly documente the relationship)

a. Novel invention not supported by any existing practice in the past >20 years of commercial compilers.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1774r2.pdf

P2064R0: Assumptions \ Herb Sutter
Hierarchy of assumptions: As-if < UB < Assume(false) < Assume(expr) < Miscompile

We can enable optimizations primarily via the as-if rule, which cannot change the observable behavior of a
program. The following are possible emulation:

e Undefined Behaviour: *(volatile int*)0 = 0OXDEAD
e Assume(expr): __assume(0) , __ builtin_unreachable()
Emulations: #define __hand_rolled_assume(expr) if(expr){}else{ *(volatile int*)0
= OxDEAD,; }

#define __hand_rolled_assume(expr) if(expr){}else{ const inti = 0;

(int&)i=0xDEAD; }
#define __hand_rolled_assume(expr) if(expr){}else{ _ builtin_unreachable(); }

e Assume(false): __assume(expr), __ builtin_assume(expr)
Emulations: #define __hand_rolled_assume_false() (*((volatile int*)0)=0xDEAD)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf

P2064R0: Assumptions \ Herb Sutter

Discussion:

1. Why not implement Assume(expr) in terms of Assume(false):
e assum(0)is _ builtin_unreachable() (and not assume data) (claimed by Hal Finkel & Eric Burmer’s)

int test(bool cnd1, bool cnd2)
{ -
int x;
if (cndl)
X =05;
else if (cnd2)
X =06;
else
__assume(0)
return X; // warning C4701: ‘x’ potentially uninitialized

¥
1. Why not implement either Assume in terms of UB:
e [t’s hard to know whether the programmer intended the UB to imply unreachability or fact injection, should
have specific syntax

Related paper by Hal Finkel, Generalized Dynamic Assumptions, 2015: N4425

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf

P2064R0: Assumptions \ Herb Sutter

e Surveying real-world compilers: Cases and insights:
1. Sample survey: Actual branch elision on major compilers and -O levels
e A list of compiler behaviour test cases
1. Existing products’ usability limitations on using facts via time travel:
Violations of sequential consistency and causality in current practice
e Consider the following example:
auto test(int x)

{
int local = 0;
local +=x;
f(local); // f's argument is
‘local’
int local2 = local; // return value is ‘local’

ASSUME(x==0);
return local2;

e return(
e fis called with x value

Related paper by Hal Finkel, Generalized Dynamic Assumptions, 2015: N4425

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2064r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf

P1795R1: System topology discovery for heterogeneous & distributed computing \ Gordon Brown,
Ruyman Reyes, Michael Wong, Mark Hoemmen, Jeff Hammond, Tom Scogland, Domagoj Sari¢

Separate proposals for high-level interface and one for the low-level interfaces. (this is the low level one)
Define abstract properties of system architectures and topology that are not tied to any specific hardware,
Including:

o a hierarchy depth-based view

o amemory-centric view

o network-centric view.

e Provide interface for querying properties of an execution resource, including relative affinity (7p°1) properties.
binding execution agents and initialization of data.

e Examples of resources:
o many-core CPUs, GPUs, FPGAs and DSPs to specifically designed vision and machine learning
processors
o memory modules

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1795r1.html

P1795R1: System topology discovery for heterogeneous & distributed computing \ Gordon Brown,
Ruyman Reyes, Michael Wong, Mark Hoemmen, Jeff Hammond, Tom Scogland, Domagoj Sari¢

o Header: <system>: namespace experimental {
class system_topology {

system_topology() = delete;
};
class system_resource {
/* to be defined */

3
template <class T>
to-be-decided<system_resource> traverse_topology(const system_topology &, const T &) noexcept;

[* this_system::discover_topology */
namespace this_system {
system_topology discover_topology();
} // namespace this_system
} /] experimental

o Class: <system_topology>
o Class: <system_resource>
o Free functions:

m this_system::discover_topology

m Template function: template <class T>

to-be-decided<system_resource> traverse_topology(const

tem_topology &, const T &) noexcept;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1795r1.html

P2004R0: Numbers and their Scopes \ Antony Polukhin

e Suggest separating evolving SG6 work from previous papers:
1. P0101 was providing the "Introduction on SG6" and "Design Principles”.
2. P1889 is for design. Proposed scopes are:
3. New numeric types that are widely useful and were already discussed
4. Basic building blocks for implementing new numeric types on top of build-in types
5. Minimal and consistent functionality to make the introduced types and functions usable for basic use-cases
e Newer ideas will be on different papers (in order to separate working process from the already accepted ideas)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2004r0.html

P1371R2: Pattern Matching /Sergei Murzin, Michael Park, David Sankel, Dan Sarginson

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r2.pdf

P2070R0: A case for optional and object_ptr \ Peter Sommerlad, Anthony Williams, Michael Wong, Jan

Babst
e Suggests to add: optional<T&>

object_ptr<T> const

std::optional<reference_wrapper<T>>
object_ptr<T>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2070r0.pdf

