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Mobile and Digital Out Of Home DSP

UBI MO e Billions of records are processed per day
® Dozens of pipelines of various complexity

Location-based marketing Intelligence Platform

® Many more pipelines.
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Ubimo MR development history

2015 First single-node C++ MR (on AWS)
2016 Dozens of pipelines deployed in prod

2017 We switched to GCP, cloud economy changed

Developed MR2 - distributed version

2019 Adopted flow building principles from
Java-based frameworks, improved our
infrastructure - single node MR3 over GAIA
(open sourced)



Prelude - 20 years ago

® Data center real-estate economy - rent per area
® Renters got cooling and electricity included.




Most companies
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Google - 1998

Bought cheap unreliable hardware
Stripped what they could

Fully utilized their rental capacity
Beat data-center hosting company

at their game

Used economics to their advantage




Google 2002-2004

Problem - reliability at scale:

Distributed files system - GFS
“It provides fault tolerance while running on inexpensive commodity hardware,
and it delivers high aggregate performance to a large number of clients..”

Mapreduce paper

“The run-time system takes care of the details of partitioning the input data,
scheduling the program’s execution across a set of machines, handling machine
failures, and managing the required inter-machine communication”



To summarize

Google used datacenter economy to their
advantage

Used unreliable, weak (1-2 cores) machines
Butterfly effect - creation of fault tolerant &
distributed systems suited for cheap hardware



What’s more expensive?

96 Single
1-core O6-core
machines machine




What’s more powerful?

96 Single
1-core O6-core
machines machine




Design Goals

Best
Value per
dollar

Reduce

I/0 usage




Word Count Benchmark

100 beam 1-cpu nodes 96-core (xpreemptable)
node

The task: process web pages, count words frequency.
Dataset: 351GB of gzipped pages. Compiled from CommonCrawl
sample (18.5 billion lines of text).

2 test setups: with combiner (original) and without.
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Word Count Benchmark

100 beam 1-cpu nodes 96-core (xpreemptable)
node
Combiner(originai) 56 minutes/675 cents 18 minutes/25 cents

No Combiner 160 minutes/2032 cents 29 minutes/34 cents
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Mapreduce as glorified Join/GroupBy

Not a novel algorithm.

A paradigm, computational framework. Brilliant engineering
solution.

Fits for big-data problems, with repeatable, parallelizable
computations without lots of inter-dependencies.

Prerequisite: design your problem as map and reduce.
If it fits — implement your “map” and ‘“reduce” operators and
run the pipeline.



WordCount mapper

For each word : WebDoc
Write(shard_id = hash(word) % N, word, 1)
1/ @adsic

class WordSplitter ({
public:
WordSplitter() : re (" (\\pL+)") {}

void Do (string line, DoContext<WordCount>¥ ¢ntx) ({
string word;
while (RE2::FindAndConsume (&line, *re , &word)) {

cntx->Write (WordCount{word, 1}); T e



WordCount reducer

For each word, stream<values> : Shard
Total_sum = Sum(stream)

Output(word, total_sum)

class WordGroupBy {
public: &
voideOnWordCount (WordCount we; DoContext<WordE€ount»* tcontext) {
vowdrdnWWabd@olimt (sordhgt+keye.8hteam<uint 64 t> counts,
} DoContext<string>* context) {
uint64 t sum = 0;
white HMeount'stenmpty )y I''sum't=‘countsNext () ; }
voddn@ashasHiEind e BoConErxE(WOrdCouptREyenEsn) § ;word _table .Flush(cntx); |}
}
private:
WordCountTable word table ;
}i
}i
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Shuffling step: Merging micro-shards by key

Key2, Valuel
Key2, Value2
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Mapreduce Anatomy

® Mapping phase
o Transform each record
0 Horizontally scalable
0 Independent
O Mapper output is partitioned into K micro-shards files
0 xPossible combining
e Shuffling
O Gather mapper output from multiple machines/workers.
0 Reshuffle and merge into K shards, possibly sort them
0 Possibly distribute into Reducer workers for further processing.
® Reducer phase
o Load shard I (possibly from several sources).
o Iterate and join per common key.
o Apply Reduce/Join/GroupBy and output.



Bind Everything

PTable<WordCount> intermediate table =
pipeline->ReadText ("inpl", inputs) .Map<WordSplitter>("word splitter", db);
intermediate table.Write ("word interim", pb::WireFormat::TXT)

.WithModNSharding (FLAGS num shards,

[] (const WordCounté& wc) { return base::Fingerprint (wc.word) ;

.AndCompress (pb: :Output::ZSTD, FLAGS compress level);

PTable<WordCount> word counts = pipeline->Join<WordGroupBy> (
"group by", {intermediate table.BindWith (&WordGroupBy: :0OnWordCount) }) ;
word counts.Write ("wordcounts", pb::WireFormat: :TXT)

.AndCompress (pb: :Output: :2STD, FLAGS compress level);

1)



Classic approach: multiple I0 Passes per stream

e Mapping Phase: Input Read + Write (partitioning)

Shuffling: Partition Read + Sort + Write merge-sorted shards.
Reduce Phase: Streams Read + Write (output)

Total: 3 1/0 passes:reads & writes.
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GAIA Philosophy \ \f‘\
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® lLess I/0 usage - more performance Py %
0 Provides weaker guarantees, less resilient to hw failureg;

0 Requires more control from a pipeline developer

e fFully utilize all the CPU and RAM of a single node.

e WYBWYR: What You Build is What You Run
o No pipeline optimizer.
o Shard processing is pushed to pipeline user-code.
o No shuffle phase: 2 1I/0 passes.
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What now?

Try it!
Needs better documentation, so ask questions and I will add as
much as possible.
Has few examples
Needs traction with the community.




Bonus question

What is common between this lecture and the next one?




Appendix mrgrep

class Grepper {

public:
Grepper (string reg exp) : re (reg exp) {
CHECK (re_.ok());
}

void Do (string val, DoContext<string>* context) {

if (RE2::PartialMatch(val, re )) {
auto* raw = context->raw();
S T Bl c TIOTC () e e P TIIPUC POt ~< B <SR N
}
}
private:
RE2 re ;

i

https://github.com/romange/gaia/blob/master/examples/mrgrep.cc
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Appendix mrgrep

int main(int argc, char** argv) {
PipelineMain pm(&argc, &argv);

auto inputs =

Pipeline* pipeline = pm.pipeline() ;

StringTable st = pipeline->ReadText ("read input", inputs);
StringTable no output = st.Map<Grepper>("grep", FLAGS e);
no output.Write("null", pb::WireFormat::TXT);

LocalRunner* runner = pm.StartLocalRunner ("/tmp/") ;
pipeline—->Run (runner) ;

return 0;



