C++ MAPREDUCE

SINGLE NODE EDITION

November, 2019

Roman Gershman,

Thanks to Adi Solodnik for making these slides great.

Bl

github.com/romange/gaia EE%&E
e

mailto:romange@gmail.com

https://www.ubimo.com/about/

Mobile and Digital Out Of Home DSP

UBI MO e Billions of records are processed per day
® Dozens of pipelines of various complexity

Location-based marketing Intelligence Platform

® Many more pipelines.

https://www.ubimo.com/about/

Ubimo MR development history

2015 First single-node C++ MR (on AWS)
2016 Dozens of pipelines deployed in prod

2017 We switched to GCP, cloud economy changed

Developed MR2 - distributed version

2019 Adopted flow building principles from
Java-based frameworks, improved our
infrastructure - single node MR3 over GAIA
(open sourced)

Prelude - 20 years ago

® Data center real-estate economy - rent per area
® Renters got cooling and electricity included.

Most companies

B b b e b

o b et e b)

Google - 1998

Bought cheap unreliable hardware
Stripped what they could

Fully utilized their rental capacity
Beat data-center hosting company

at their game

Used economics to their advantage

Google 2002-2004

Problem - reliability at scale:

Distributed files system - GFS
“It provides fault tolerance while running on inexpensive commodity hardware,
and it delivers high aggregate performance to a large number of clients..”

Mapreduce paper

“The run-time system takes care of the details of partitioning the input data,
scheduling the program’s execution across a set of machines, handling machine
failures, and managing the required inter-machine communication”

To summarize

Google used datacenter economy to their
advantage

Used unreliable, weak (1-2 cores) machines
Butterfly effect - creation of fault tolerant &
distributed systems suited for cheap hardware

What’s more expensive?

96 Single
1-core O6-core
machines machine

What’s more powerful?

96 Single
1-core O6-core
machines machine

Design Goals

Best
Value per
dollar

Reduce

I/0 usage

Word Count Benchmark

100 beam 1-cpu nodes 96-core (xpreemptable)
node

The task: process web pages, count words frequency.
Dataset: 351GB of gzipped pages. Compiled from CommonCrawl
sample (18.5 billion lines of text).

2 test setups: with combiner (original) and without.

https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/blob/master/examples/wordcount/word_count.cc
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java

Word Count Benchmark

100 beam 1-cpu nodes 96-core (xpreemptable)
node
Combiner(originai) 56 minutes/675 cents 18 minutes/25 cents

No Combiner 160 minutes/2032 cents 29 minutes/34 cents

https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/tree/master/examples/wordcount

TIME+ Command

SHR S CPU% MEM%

RES
0 42.3G 41.4G 17304 S 9564 48.8 3h03:34 word count

0 20616 5352 3480 R 2.5 0.0 0:03.45 htop

PRI NI VIRT

PID USER
4903 prod

1000

--num_shards

ubiroman/cc/2018-05/pages2/outpl/outpl-shard-*

)
e
1=
=5
o
o
©
7
=]
=
o
o
>
-
=
=

=true --dest dir=

--use combine

20
20

Mapreduce as glorified Join/GroupBy

Not a novel algorithm.

A paradigm, computational framework. Brilliant engineering
solution.

Fits for big-data problems, with repeatable, parallelizable
computations without lots of inter-dependencies.

Prerequisite: design your problem as map and reduce.
If it fits — implement your “map” and ‘“reduce” operators and
run the pipeline.

WordCount mapper

For each word : WebDoc
Write(shard_id = hash(word) % N, word, 1)
1/ @adsic

class WordSplitter ({
public:
WordSplitter() : re (" (\\pL+)") {}

void Do (string line, DoContext<WordCount>¥ ¢ntx) ({
string word;
while (RE2::FindAndConsume (&line, *re , &word)) {

cntx->Write (WordCount{word, 1}); T e

WordCount reducer

For each word, stream<values> : Shard
Total_sum = Sum(stream)

Output(word, total_sum)

class WordGroupBy {
public: &
voideOnWordCount (WordCount we; DoContext<WordE€ount»* tcontext) {
vowdrdnWWabd@olimt (sordhgt+keye.8hteam<uint 64 t> counts,
} DoContext<string>* context) {
uint64 t sum = 0;
white HMeount'stenmpty)y I''sum't=‘countsNext () ; }
voddn@ashasHiEind e BoConErxE(WOrdCouptREyenEsn) § ;word _table .Flush(cntx); |}
}
private:
WordCountTable word table ;
}i
}i

Web
Documents

WordCount graph

Document
splitters

al
d,

Sharded
Words

v Shardl

Shard2

\ Shard3

Shard10

Possible
Reshuffling

< Shardl

< Shard2 »

< Shard3 >

Shard9

<Shard10

Reducef;;i >

:> Reducei_

:> Reduce}f,’f:-

Reduced Output

© ®

O @

Shuffling step: Merging micro-shards by key

Key2, Valuel
Key2, Value2

Key n, Valuel
Key n, Value2

Key n, Value3

Key2, Valuel
Key2, Value2

Key n, Valuel

Key n, Value2

Key n, Value3

Mapreduce Anatomy

® Mapping phase
o Transform each record
0 Horizontally scalable
0 Independent
O Mapper output is partitioned into K micro-shards files
0 xPossible combining
e Shuffling
O Gather mapper output from multiple machines/workers.
0 Reshuffle and merge into K shards, possibly sort them
0 Possibly distribute into Reducer workers for further processing.
® Reducer phase
o Load shard I (possibly from several sources).
o Iterate and join per common key.
o Apply Reduce/Join/GroupBy and output.

Bind Everything

PTable<WordCount> intermediate table =
pipeline->ReadText ("inpl", inputs) .Map<WordSplitter>("word splitter", db);
intermediate table.Write ("word interim", pb::WireFormat::TXT)

.WithModNSharding (FLAGS num shards,

[] (const WordCounté& wc) { return base::Fingerprint (wc.word) ;

.AndCompress (pb: :Output::ZSTD, FLAGS compress level);

PTable<WordCount> word counts = pipeline->Join<WordGroupBy> (
"group by", {intermediate table.BindWith (&WordGroupBy: :0OnWordCount) }) ;
word counts.Write ("wordcounts", pb::WireFormat: :TXT)

.AndCompress (pb: :Output: :2STD, FLAGS compress level);

1)

Classic approach: multiple I0 Passes per stream

e Mapping Phase: Input Read + Write (partitioning)

Shuffling: Partition Read + Sort + Write merge-sorted shards.
Reduce Phase: Streams Read + Write (output)

Total: 3 1/0 passes:reads & writes.

h/
‘. g “l;“ﬁu£!!!;-
A PAPE, -C R

GAIA Philosophy \ \f‘\

// \\ S

\ é§/}\\
® lLess I/0 usage - more performance Py %
0 Provides weaker guarantees, less resilient to hw failureg;

0 Requires more control from a pipeline developer

e fFully utilize all the CPU and RAM of a single node.

e WYBWYR: What You Build is What You Run
o No pipeline optimizer.
o Shard processing is pushed to pipeline user-code.
o No shuffle phase: 2 1I/0 passes.

b,(|
s

&'

))

L3

What now?

Try it!
Needs better documentation, so ask questions and I will add as
much as possible.
Has few examples
Needs traction with the community.

Bonus question

What is common between this lecture and the next one?

Appendix mrgrep

class Grepper {

public:
Grepper (string reg exp) : re (reg exp) {
CHECK (re_.ok());
}

void Do (string val, DoContext<string>* context) {

if (RE2::PartialMatch(val, re)) {
auto* raw = context->raw();
S T Bl c TIOTC () e e P TIIPUC POt ~< B <SR N
}
}
private:
RE2 re ;

i

https://github.com/romange/gaia/blob/master/examples/mrgrep.cc

https://github.com/romange/gaia/blob/master/examples/mrgrep.cc

Appendix mrgrep

int main(int argc, char** argv) {
PipelineMain pm(&argc, &argv);

auto inputs =

Pipeline* pipeline = pm.pipeline() ;

StringTable st = pipeline->ReadText ("read input", inputs);
StringTable no output = st.Map<Grepper>("grep", FLAGS e);
no output.Write("null", pb::WireFormat::TXT);

LocalRunner* runner = pm.StartLocalRunner ("/tmp/") ;
pipeline—->Run (runner) ;

return 0;

