
C++ MAPREDUCE
 SINGLE NODE EDITION

November, 2019

Roman Gershman, romange@gmail.com

Thanks to Adi Solodnik for making these slides great.

github.com/romange/gaia

mailto:romange@gmail.com

UBIMO

https://www.ubimo.com/about/

Mobile and Digital Out Of Home DSP

● Billions of records are processed per day

● Dozens of pipelines of various complexity

Location-based marketing Intelligence Platform

● Many more pipelines.

https://www.ubimo.com/about/

2015

2016

2017

2019

First single-node C++ MR (on AWS)

Dozens of pipelines deployed in prod

We switched to GCP, cloud economy changed
Developed MR2 - distributed version

Adopted flow building principles from
Java-based frameworks, improved our
infrastructure - single node MR3 over GAIA
(open sourced)

Ubimo MR development history

Prelude - 20 years ago
● Data center real-estate economy - rent per area

● Renters got cooling and electricity included.

Most companies

Google - 1998

● Bought cheap unreliable hardware

● Stripped what they could

● Fully utilized their rental capacity

● Beat data-center hosting company

at their game

Used economics to their advantage

Google 2002-2004

Problem - reliability at scale:

● Distributed files system - GFS

“It provides fault tolerance while running on inexpensive commodity hardware,

and it delivers high aggregate performance to a large number of clients…”

● Mapreduce paper

“The run-time system takes care of the details of partitioning the input data,

scheduling the program’s execution across a set of machines, handling machine

failures, and managing the required inter-machine communication”

To summarize

● Google used datacenter economy to their

advantage

● Used unreliable, weak (1-2 cores) machines

● Butterfly effect - creation of fault tolerant &

distributed systems suited for cheap hardware

What’s more expensive?

96
1-core

machines

Single
96-core
machine

What’s more powerful?

96
1-core

machines

Single
96-core
machine

Design Goals

Reduce
I/O usage

Best
Value per
dollar

Word Count Benchmark

● The task: process web pages, count words frequency.

● Dataset: 351GB of gzipped pages. Compiled from CommonCrawl

sample (18.5 billion lines of text).

● 2 test setups: with combiner (original) and without.

100 beam 1-cpu nodes 96-core (*preemptable)

node

GAIA

https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/blob/master/examples/wordcount/word_count.cc
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java

Word Count Benchmark

100 beam 1-cpu nodes 96-core (*preemptable)

node

Combiner(original) 56 minutes/675 cents 18 minutes/25 cents

No Combiner 160 minutes/2032 cents 29 minutes/34 cents

GAIA

https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/blob/master/examples/wordcount/WordCount.java
https://github.com/romange/gaia/tree/master/examples/wordcount
https://github.com/romange/gaia/tree/master/examples/wordcount

Word count in action

Mapreduce as glorified Join/GroupBy

● Not a novel algorithm.

● A paradigm, computational framework. Brilliant engineering

solution.

● Fits for big-data problems, with repeatable, parallelizable

computations without lots of inter-dependencies.

● Prerequisite: design your problem as map and reduce.

If it fits - implement your “map” and “reduce” operators and

run the pipeline.

WordCount mapper

For each word : WebDoc

Write(shard_id = hash(word) % N, word, 1)

class WordSplitter {

 public:

 WordSplitter() : re_("(\\pL+)") {}

 void Do(string line,

 string word;

 while (RE2::FindAndConsume(&line, *re_, &word)) {

 }

 }

}

cntx->Write(/*key: */ word, /*value:*/ 1);cntx->Write(WordCount{word, 1});

DoContext<int>* cntx) {DoContext<WordCount>* cntx) {

// Classic// GAIA

class WordGroupBy {

public:

 // Receives a key and all the values assiociated with it.

 void OnWordCount(string key, Stream<uint64_t> counts,

 DoContext<string>* context) {

 uint64_t sum = 0;

 while (!counts.empty()) { sum += counts.Next(); }

 context->Write(std::format("{}:{}", key, sum));

 }

};

WordCount reducer

For each word, stream<values> : Shard

Total_sum = Sum(stream)

Output(word, total_sum)

private:

 WordCountTable word_table_;

};

void OnWordCount(WordCount wc, DoContext<WordCount>* context) {

 word_table_[wc.word] += wc.cnt;

}

// We hold the whole shard in memory

void OnShardFinish(DoContext<WordCount>* cntx) { word_table_.Flush(cntx); }

WordCount graph

Shuffling step: Merging micro-shards by key

Mapreduce Anatomy

● Mapping phase
○ Transform each record
○ Horizontally scalable
○ Independent
○ Mapper output is partitioned into K micro-shards files
○ *Possible combining

● Shuffling
○ Gather mapper output from multiple machines/workers.
○ Reshuffle and merge into K shards, possibly sort them
○ Possibly distribute into Reducer workers for further processing.

● Reducer phase
○ Load shard I (possibly from several sources).
○ Iterate and join per common key.
○ Apply Reduce/Join/GroupBy and output.

Bind Everything

// Mapper phase

PTable<WordCount> intermediate_table =

 pipeline->ReadText("inp1", inputs).Map<WordSplitter>("word_splitter", db);

intermediate_table.Write("word_interim", pb::WireFormat::TXT)

 .WithModNSharding(FLAGS_num_shards,

 [](const WordCount& wc) { return base::Fingerprint(wc.word); })

 .AndCompress(pb::Output::ZSTD, FLAGS_compress_level);

// GroupBy phase

PTable<WordCount> word_counts = pipeline->Join<WordGroupBy>(

 "group_by", {intermediate_table.BindWith(&WordGroupBy::OnWordCount)});

word_counts.Write("wordcounts", pb::WireFormat::TXT)

 .AndCompress(pb::Output::ZSTD, FLAGS_compress_level);

Classic approach: multiple IO Passes per stream

● Mapping Phase: Input Read + Write (partitioning)

● Shuffling: Partition Read + Sort + Write merge-sorted shards.

● Reduce Phase: Streams Read + Write (output)

Total: 3 I/O passes:reads & writes.

GAIA Philosophy

● Less I/O usage - more performance
○ Provides weaker guarantees, less resilient to hw failures.

○ Requires more control from a pipeline developer

● Fully utilize all the CPU and RAM of a single node.

● WYBWYR: What You Build is What You Run
○ No pipeline optimizer.

○ Shard processing is pushed to pipeline user-code.

○ No shuffle phase: 2 I/O passes.

What now?

● Try it!

● Needs better documentation, so ask questions and I will add as

much as possible.

● Has few examples

● Needs traction with the community.

Bonus question

What is common between this lecture and the next one?

Appendix mrgrep

class Grepper {
 public:
 Grepper(string reg_exp) : re_(reg_exp) {
 CHECK(re_.ok());
 }

 void Do(string val, DoContext<string>* context) {
 if (RE2::PartialMatch(val, re_)) {
 auto* raw = context->raw();
 cout << raw->input_file_name() << ":" << raw->input_pos() << " " << val << endl;
 }
 }
 private:
 RE2 re_;
};

https://github.com/romange/gaia/blob/master/examples/mrgrep.cc

https://github.com/romange/gaia/blob/master/examples/mrgrep.cc

Appendix mrgrep

int main(int argc, char** argv) {

 PipelineMain pm(&argc, &argv);

 auto inputs = ...

 Pipeline* pipeline = pm.pipeline();

 StringTable st = pipeline->ReadText("read_input", inputs);

 StringTable no_output = st.Map<Grepper>("grep", FLAGS_e);

 no_output.Write("null", pb::WireFormat::TXT);

 LocalRunner* runner = pm.StartLocalRunner("/tmp/");

 pipeline->Run(runner);

 return 0;

}

