
© 2019 by CYBERBIT │ CYBERBIT Proprietary

Cache consistency and the C++ memory model:
Writing code for real hardware

Yossi Moalem

© 2019 by CYBERBIT │ CYBERBIT Proprietary

• Team leader as Cyberbit

• 15 years as a C++ programmer

• Married with 3 children

• Obsessive cyclist

• E-mail: moalem.yossi@gmail.com

About Me

© 2019 by CYBERBIT │ CYBERBIT Proprietary

The computer we think we program for

CPU
RAM

And then came Gordon Moore

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Moore’s Law

The number of transistors in a dense integrated circuit doubles

every two years

• CPU became much faster very fast

• Memory speed did not advance so fast

© 2019 by CYBERBIT │ CYBERBIT Proprietary

The computer we think we program for

CPU
RAM

© 2019 by CYBERBIT │ CYBERBIT Proprietary

The computer we are actually programming for

CPU

Core

RAM

CPU

Core

CPU

Core

CPU

Core

L1I

L2

L2

L3

T1

T2

T1

T2

T1

T2

T1

T2

L1D

L1I

L1D

L1I

L1D

L1I

L1D

s

b

s

b

s

b

s

b

Not to scale!

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Cache Hierarchy, The numbers

• L1 Cache:
• 2-4 cycles
• 32K, for instruction, 32K for data
• Per core, shared between HW threads

• L2 Cache
• 15-18 cycles
• 256K, shared for instructions and data
• Per CPU

• L3 Cache
• 30-40 cycles
• 32M, shared for instructions and data
• Per machine

• Main Memory
• Over 100 cycles (150-200 and maybe

more!)

Faster
Larger

© 2019 by CYBERBIT │ CYBERBIT Proprietary

A graph is much better

L1 L2 L3 Main Memory

© 2019 by CYBERBIT │ CYBERBIT Proprietary

One picture worth 1000 words

L1 L2 L3 Main Memory

© 2019 by CYBERBIT │ CYBERBIT Proprietary

One animation worth 100 pictures

CPU

L1

L2

L3

Main memory

To scale!

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Row by row v’s col by col

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Is col by col the worst?

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Reducing matrix size

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Cache: Requirements

• Swapping in/out should be efficient

• Fast lookup

• Minimize maintenance

• Non-consecutive

• Locality

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Cache Line

• Fixed size block of memory

• Smallest cache-able unit

• When memory required, the whole cache line is swapped in

Main Memory

Cache

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Cache lookup

Cache

Main Memory
(Cache lines)

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Reducing matrix size

© 2019 by CYBERBIT │ CYBERBIT Proprietary

False Sharing

• Cores do not share data - they do share cache lines

• False sharing requires:

• Several cores accessing the same cache line

• Frequently

• At least one is a writer

• Not only arrays:

• Heap allocation, globals, statics

• Even from different translation units

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Lightweight Counters:

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CPU 1 CPU 2 CPU 3

Counter 1 Counter 2 Counter 3 Counter 4 Counter 5

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Measuring Strategy

• Each thread will perform a pre-defined set of iterations

• So N threads will do N times more work than 1 thread

• Measure from 1 to 31 threads

• Calculate slowdown

• Expected:
• Best case: slowdown of 1

• Worst case: slowdown of N

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Naïve implementation results:

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Naïve implementation – closer look

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Group by CPU

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Group by CPU – Results

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Group by CPU – closer look:

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Align to cache line

1 1 1 1 1 2 2 2 2 2

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Align to cache line – Results:

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Compiler has freedom!

• The compiler can change the code
• Rearrange/remove memory access

• Reuse location

• To use the HW better:
• Provide better locality

• Reduce stale cycles

• Maintain observable state, from the same thread POV

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Compiler reordering

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Volatile

• Introduced for MMIO

• Reordering non-volatile and volatile is permitted

• Every access to the variable will be restricted

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Compiler Barrier

© 2019 by CYBERBIT │ CYBERBIT Proprietary

HW has freedom too!

• CPU may reorder instructions as well

• Several functional units

• Execute instruction while waiting for previous instructions operand

• Data availability order, rather then instruction order.

• Reduce memory access wait time

© 2019 by CYBERBIT │ CYBERBIT Proprietary

CPU Reordering

Assume finished and answer initialized to 0

<Core #2 >

while (! finished) { ; }

cout << answer;

<Core #1>

answer = 42;

finished = 1;
May reorder May reorder

• Threads need to communicate

• Reads and writes order reasoning

• With respect to memory access

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Memory Model

• The set of allowed reorders
• LoadLoad, LoadStore, StoreStore, StoreLoad

• And how to limit that

• Toolchain issue fence for the architecture

• If such fence is unavailable, a stronger fence is issued

• Full fence

• One-way fence

• C++ did not define memory model until C++ 11

• Synchronization mechanisms include the required fence

© 2019 by CYBERBIT │ CYBERBIT Proprietary

SC-DRF

• Sequential consistency (SC):

“the result of any execution is the same as if the reads and writes
occurred in some order, and the operations of each individual
processor appear in this sequence in the order specified by its
program”

• Data race: simultaneously accessing an object by two threads, and
at least one thread is a writer.

• Simultaneously: without happens-before ordering.

It appears to execute the program you wrote, as

long as you didn’t write a data race.

© 2019 by CYBERBIT │ CYBERBIT Proprietary

CPU Reordering, Example Revised

<CPU #2>

while (! finished.load()){}

cout << answer;

<CPU #1>

answer = 42;

finished.store(1);

Synchronize

with

Sequenced

before

Sequenced

before

Happens

before

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Transitivity

data = 42;

t1.store (1);

while(! t1.load()) { ; }

t2.store(1);

while(! t2.load()) { ; }

assert (data == 42);

Thread #1 Thread #2 Thread #3

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Instruction reordering in action

First seen at http://preshing.com

<Thread 1>

x = 1;

// compiler barrier here

rY = y;

<Thread 2>

y = 1;

// compiler barrier here

rX = x;

x, y, rX and rY initialized to zero

© 2019 by CYBERBIT │ CYBERBIT Proprietary

The Idea, cont’d

<Main thread>

Initialize all semaphores

Spawns two threads

Do forever:

Initialize to zero

Post on start semaphores

Wait on end semaphore

Wait on end semaphore

Check if both, rX and rY are zero

<Thread 1>

Do forever:

Wait on start semaphore #1

x = 1;
Compiler Barrier

rY = y;
Post on end semaphore

<Thread 2>

Do forever:

Wait on start semaphore #2

y= 1;
Compiler Barrier

rX = x;
Post on end semaphore

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Results:

Compiled with no optimization:

Compiled with O3

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Solution

• Replacing the compiler barrier with a memory fence

x = 1;

atomic_thread_fence(memory_order_seq_cst);

rY = y;

y = 1;

atomic_thread_fence(memory_order_seq_cst);

rX = x;

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Solution

• Demonstrating this would be kind’a boring….

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Non sequentially consistent atomics

• Atomicity

• RMW will always see the latest value

• No ordering!

• One thread can see operation A before B, while another thread may see it the
other way!

Relaxed atomic

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Non sequentially consistent atomics

• Must be in tandem

• Operations sequenced before “release”, will be visible to operation

sequenced after “acquire” that synchronize with it

• Does not provide global ordering

• Better shown with an example:

Acquire - Release

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Acquire/Release – another look

! finished.load(memory_order_acquire)

answer = 42;

finished.store(1, memory_order_release);

cout << answer;

! finished.load(memory_order_acquire)

finished.load(memory_order_acquire)

Any operation after this load

We will see every operation before

this store

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Acquire/Release

<CPU #2>

while (! finished.load(memory_order_acquire)){}

cout << answer;

<CPU #1>

answer = 42;

finished.store(1, memory_order_release);

Synchronize

with

Sequenced

before

Sequenced

before

Happens

before

© 2019 by CYBERBIT │ CYBERBIT Proprietary

What about this:

atomic <bool> x (false);

atomic <bool> y (false);

atomic <bool> bothSet(false);

thread reader1 ([&]() { while (!x.load(memory_order_XXX);

if (y) bothSet= true; }) ;

thread reader2 ([&]() { while (!y.load(memory_order_XXX));

if (x) bothSet= true; }) ;

thread writer1 ([&]() { x.store(true, memory_order_XXX); }) ;

thread writer2 ([&]() { y.store(true, memory_order_XXX); }) ;

reader1.join(); reader2.join(); writer1.join(); writer2.join ();

assert (bothSet);

© 2019 by CYBERBIT │ CYBERBIT Proprietary

So…

• SC mandates a single total order of events of all operations tagged

as such

• With relaxed atomics, threads do not have to agree on the order of

events

• They only have to agree on the modification order of each

individual item

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Should you use non-sequentially consistent

• Does every micro-second count?

• Is this a hot path?

• Is this a problematic spot?

• Will it have massive testing and reviews?

• Is this a known pattern?

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Data Oriented Design

class Object {
int _pos[2];
int _speed;
Model _model;
const char _name[NAME_SIZE];
….
int _foo;

};

Consider the following class:

© 2019 by CYBERBIT │ CYBERBIT Proprietary

What is the most expensive operation?

void Object::update(int time)

{

float f = sqrt(

_pos[0] + (time* _speed) +

_pos[1] + (time * _speed)) ;

_foo += f;

}

1. Load _pos, cache miss, 200 cycles

2. Load speed, same cache line, 3

cycles

3. Multiply and add, twice, 5 cycles

twice

4. Square root, 30 cycles

5. Load _foo, cache miss, 200 cycles

6. Add result to _foo, 1 cycle

Total: 450 cycles

_pos

_speed

_model

_name

_foo

Memory

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Can the compiler help?

• 50 out of 450 cycles are real work

Compiler’s domain is the 50 cycles

Not very much…

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Back to the Example

class Object {

int _pos[2];

int _speed;

int _foo;

Model _model;

const char _name[NAME_SIZE];

….

};

© 2019 by CYBERBIT │ CYBERBIT Proprietary

The new cost:

void Object::update(int time)

{

float f = sqrt(

_pos[0] + (time* _speed) +

_pos[1] + (time * _speed)) ;

_foo += f;

}

1. Load _pos, cache miss, 200 cycles

2. Load speed, same cache line, 3

cycles

3. Multiply and add, twice, 5 cycles,

twice

4. Square root, 30 cycles

5. Load _foo, cache miss, 200 cycles

5. Load _foo, 5 cycles

6. Add result to _foo, 1 cycle

Total: 250 cycles

_pos

_speed

_foo

_model

_name

Memory

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Can we do better?

Regroup the data

class Object {

Model _model;

const char _name[NAME_SIZE];

….

};

class ObjectPosition{

float _pos[2];

float _speed;

int _foo;

};

for (auto & object : objects) {

object.update(time);

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

The new cost

• Single cache line, multiple objects

• Shared cost

• On average, fetching will cost us about 40 cycles

• Total cost ~90 cycles

© 2019 by CYBERBIT │ CYBERBIT Proprietary

DoD in one sentence

• Make continuous, tightly packed, chunks of memory that will be

used consecutively

• Re-group fields according to their usage

• When it is needed, and the transformation that’s needed

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Container Searching for a key/condition

• Load the key

• Load the object selectively

Key1 Key 2 Key 3 Key 4 Key 5 Key 6 Key 7 Key 8 Key 9 Key

10

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Polymorphism

• shapes is likely to contain:

square, circle, polygon, square, text, rectangle….

for (Shape * currentShape : shapes) {

currentShape->draw();

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Polymorphism, Resolution

for (Circle* currentCircle : circles) {

currentCircle->draw();

}

for (Square* currentSquare : squares) {

currentSquare->draw();

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Cache Oblivious Algorithms

• Characteristics, not existence

• Attempt to maximize cache hits

• All levels of cache hierarchy

• Can be out-performed by cache aware

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Analyzing Memory Utilization

• Analyzing using big O notation

• Idealized cache model

• Ignore cache hierarchy

• Ignore replacing policies

• Ignore associativity

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Example: Search

Search a sequence of numbers for the highest number, which is
less than X

• Data is searched many times

• Ignore preparation time

How should we store the sequence??

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #1: Binary Search

• log(n) comparisons

• Given the distance, assume that they will require memory access

• log(n)-log(B) memory accesses are required

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #2: B-Tree

• Set B to our cache-line size

• We will require log B (N) steps

• Each node will be loaded in one cache line

• O(log (N) / log(B)) memory accesses

• But….
• We need to know B

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Van Emde Boas

• Full description and analysis is outside the scope

• Set a fully balanced tree

• Recursively divide it to sub-trees

• Each sub-tree is copied to sequential memory

• Use this to search

© 2019 by CYBERBIT │ CYBERBIT Proprietary

© 2019 by CYBERBIT │ CYBERBIT Proprietary

13

4

2 6

17

15

1 3

19

95 1814 16 20

13 4 51 3 6 9217

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Van Emde Boas, intuitive analysis

• Each section is of size B or less
• 2 memory accesses per section

• Section height between log(B) to log(B)/2

• Tree height is log(n)

• Max sections we will visit is log(N)/(log(B)/2)

• This will require 4(log(N)/log(B)) memory accesses

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Thank You

© 2019 by CYBERBIT │ CYBERBIT Proprietary

The Pattern

Singleton* Singleton ::instance () {

if (_instance == nullptr) {

std::lock_guard<std::mutex>

lock(_mutex);

if (_instance == nullptr) {

_instance = new Singleton();

}

}

return _instance;

}

Allocate memory

Call C’tor

Assign

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #1: Adding temporary

Singleton * Singleton ::instance () {

if (_instance == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) {

Singleton * tmp = new Singleton();

_instance = tmp;

}

}

return _instance;

}

Optimize out the temporary.

Back to square 1.

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #2: Outsmart the compiler

• Change tmp to larger scope, say static
• Compiler can still detect this

• Define tmp as extern
• Can still detect this

• Or, place construction after both

• Define helper on other translation unit
• Compiler must assume it can throw

• No inlining

• Link-time inlining kills this attempt

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #3: Volatile

• Qualify tmp and _instance as volatile
• All side effects of one volatile must be completed before addressing the other

Singleton * Singleton ::instance () {

if (_instance == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) {

Singleton * volatile tmp = new Singleton();

_instance = tmp; // static Singleton * volatile

}

}

return _instance;

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #3: Volatile, cont’d

Lets inline a constructor:

Singleton * Singleton ::instance () {

if (_instance == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) {

Singleton * volatile tmp = new Singleton();

tmp->x = 4 //from the c’tor

_instance = tmp;

}

}

return _instance;

}

This new

instruction may be

reordered

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Conclusion

Trying to outsmart the compiler is a bad idea

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #4: Compiler barrier

Singleton * Singleton::instance () {

if (_instance == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) {

Singleton * tmp = new Singleton();

// Compiler Barrier here

_instance = tmp;

}

}

return _instance;

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

What about CPU Re-Ordering

Game Over!

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #5: Memory Barrier

Singleton * Singleton::instance() {

if (_instance == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) {

Singleton * tmp = new Singleton;

std::atomic_thread_fence(std::memory_order_seq_sct);

_instance = tmp;

}

}

return _instance ;

}

Non atomic

assignment

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #5: atomic

Singleton * Singleton ::instance() {

Singleton * tmp = _instance.load();

if (tmp == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);

tmp = _instance.load();

if (tmp == nullptr) {

tmp = new Singleton;

_instance = tmp;

}

}

return tmp ;

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

This works!

• But uses sequential consistency

• Can be expensive

• Can we do better?

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #6: acquire-release

Singleton * Singleton ::instance() {
Singleton * tmp = _instance.load(std::memory_order_acquire);
if (tmp == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);
tmp = _instance.load(memory_order_relaxed);
if (tmp == nullptr) {

tmp = new Singleton ;
_instance.store(tmp, memory_order_release);

}
}
return tmp;

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Attempt #7: do we need the lock?

Singleton * Singleton::instance() {

Singleton* tmp = _instance.load(memory_order_relaxed);

if (tmp == nullptr) {

Singleton * newInstance = new Singleton ;

if (! (_instance.compare_exchange_strong(tmp, newInstance,

memory_order_relaxed))) {

delete newInstance;

}

}

return _instance.load(memory_order_relaxed);

}

© 2019 by CYBERBIT │ CYBERBIT Proprietary

Back to the sketching board

C++ 11 states:

If control enters the declaration concurrently while the

variable is being initialized, the concurrent execution will wait

for completion of the initialization.

Singleton & Singleton::instance() {

static Singleton instance;

return instance;

}

So, the final answer…

