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• Team leader as Cyberbit

• 15 years as a C++ programmer

• Married with 3 children

• Obsessive cyclist

• E-mail: moalem.yossi@gmail.com
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The computer we think we program for 

CPU
RAM

And then came Gordon Moore
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Moore’s Law 

The number of transistors in a dense integrated circuit doubles 

every two years

• CPU became much faster very fast

• Memory speed did not advance so fast
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The computer we think we program for 

CPU
RAM
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The computer we are actually programming for 
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Cache Hierarchy, The numbers

• L1 Cache:
• 2-4 cycles
• 32K, for instruction, 32K for data
• Per core, shared between HW threads

• L2 Cache
• 15-18 cycles
• 256K, shared for instructions and data
• Per CPU

• L3 Cache
• 30-40 cycles
• 32M, shared for instructions and data
• Per machine

• Main Memory
• Over 100 cycles (150-200 and maybe 

more!)

Faster
Larger
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A graph is much better

L1 L2 L3 Main Memory
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One picture worth 1000 words

L1 L2 L3 Main Memory
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One animation worth 100 pictures
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To scale!
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Row by row v’s col by col
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Is col by col the worst?
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Reducing matrix size
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Cache: Requirements

• Swapping in/out should be efficient

• Fast lookup

• Minimize maintenance 

• Non-consecutive

• Locality
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Cache Line

• Fixed size block of memory

• Smallest cache-able unit

• When memory required, the whole cache line is swapped in

Main Memory

Cache
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Cache lookup

Cache

Main Memory
(Cache lines)
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Reducing matrix size
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False Sharing

• Cores do not share data - they do share cache lines

• False sharing requires:

• Several cores accessing the same cache line

• Frequently

• At least one is a writer

• Not only arrays:

• Heap allocation, globals, statics

• Even from different translation units
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Lightweight Counters:

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CPU 1 CPU 2 CPU 3

Counter 1 Counter 2 Counter 3 Counter 4 Counter 5
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Measuring Strategy

• Each thread will perform a pre-defined set of iterations

• So N threads will do N times more work than 1 thread

• Measure from 1 to 31 threads

• Calculate slowdown 

• Expected:
• Best case: slowdown of 1

• Worst case: slowdown of N
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Naïve implementation results:
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Naïve implementation – closer look

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
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Group by CPU

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
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Group by CPU – Results 
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Group by CPU – closer look:

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
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Align to cache line 

1 1 1 1 1 2 2 2 2 2
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Align to cache line – Results:
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Compiler has freedom!

• The compiler can change the code 
• Rearrange/remove memory access

• Reuse location 

• To use the HW better:
• Provide better locality

• Reduce stale cycles

• Maintain observable state, from the same thread POV
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Compiler reordering
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Volatile

• Introduced for MMIO

• Reordering non-volatile and volatile is permitted

• Every access to the variable will be restricted
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Compiler Barrier
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HW has freedom too!

• CPU may reorder instructions as well

• Several functional units

• Execute instruction while waiting for previous instructions operand

• Data availability order, rather then instruction order.

• Reduce memory access wait time
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CPU Reordering

Assume finished and answer initialized to 0

<Core #2 >

while (! finished) { ; }

cout << answer;

<Core #1> 

answer = 42;

finished = 1;
May reorder May reorder

• Threads need to communicate 

• Reads and writes order reasoning

• With respect to memory access
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Memory Model

• The set of allowed reorders
• LoadLoad, LoadStore, StoreStore, StoreLoad

• And how to limit that

• Toolchain issue fence for the architecture

• If such fence is unavailable, a stronger fence is issued

• Full fence

• One-way fence

• C++ did not define memory model until C++ 11

• Synchronization mechanisms include the required fence
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SC-DRF

• Sequential consistency (SC): 

“the result of any execution is the same as if the reads and writes 
occurred in some order, and the operations of each individual 
processor appear in this sequence in the order specified by its 
program”

• Data race: simultaneously accessing an object by two threads, and 
at least one thread is a writer.

• Simultaneously: without happens-before ordering.

It appears to execute the program you wrote, as 

long as you didn’t write a data race.
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CPU Reordering, Example Revised

<CPU #2>

while (! finished.load()){}

cout << answer;

<CPU #1> 

answer = 42;

finished.store(1);

Synchronize

with

Sequenced 

before

Sequenced 

before

Happens 

before
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Transitivity

data = 42;

t1.store (1);

while(! t1.load() ) { ; }

t2.store(1);

while(! t2.load() ) { ; } 

assert (data == 42);

Thread #1 Thread #2 Thread #3
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Instruction reordering in action

First seen at  http://preshing.com

<Thread 1>

x = 1;

// compiler barrier here

rY = y;

<Thread 2>

y = 1;

// compiler barrier here

rX = x;

x, y, rX and rY initialized to zero
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The Idea, cont’d

<Main thread>

Initialize all semaphores

Spawns two threads

Do forever:

Initialize to zero

Post on start semaphores

Wait on end semaphore

Wait on end semaphore

Check if both, rX and rY are zero

<Thread 1>

Do forever:

Wait on start semaphore #1

x = 1;
Compiler Barrier 

rY = y;
Post on end semaphore 

<Thread 2>

Do forever:

Wait on start semaphore #2

y= 1;
Compiler Barrier 

rX = x;
Post on end semaphore 
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Results:

Compiled with no optimization:

Compiled with O3
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Solution

• Replacing the compiler barrier with a memory fence

x = 1; 

atomic_thread_fence(memory_order_seq_cst);

rY = y; 

y = 1; 

atomic_thread_fence(memory_order_seq_cst);

rX = x; 
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Solution

• Demonstrating this would be kind’a boring….
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Non sequentially consistent atomics

• Atomicity 

• RMW will always see the latest value

• No ordering!

• One thread can see operation A before B, while another thread may see it the 
other way!

Relaxed atomic
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Non sequentially consistent atomics

• Must be in tandem

• Operations sequenced before “release”, will be visible to operation 

sequenced after “acquire” that synchronize with it

• Does not provide global ordering

• Better shown with an  example:

Acquire - Release
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Acquire/Release – another look

! finished.load(memory_order_acquire)

answer = 42;

finished.store(1, memory_order_release);

cout << answer;

! finished.load(memory_order_acquire)

finished.load(memory_order_acquire)

Any operation after this load

We will see every operation before 

this store
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Acquire/Release

<CPU #2>

while (! finished.load(memory_order_acquire)){}

cout << answer;

<CPU #1> 

answer = 42;

finished.store(1, memory_order_release);

Synchronize

with

Sequenced 

before

Sequenced 

before

Happens 

before
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What about this:

atomic <bool>  x (false);

atomic <bool>  y (false);

atomic <bool> bothSet(false);

thread reader1 ([&]() { while (!x.load(memory_order_XXX);

if (y) bothSet= true;  } ) ;

thread reader2 ([&]() { while (!y.load(memory_order_XXX)); 

if (x) bothSet= true;  } ) ;

thread writer1 ([&]() { x.store(true, memory_order_XXX); } ) ;

thread writer2 ([&]() { y.store(true, memory_order_XXX ); } ) ;

reader1.join(); reader2.join(); writer1.join(); writer2.join ();

assert ( bothSet ); 
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So…

• SC mandates a single total order of events of all operations tagged 

as such

• With relaxed atomics, threads do not have to agree on the order of 

events

• They only have to agree on the modification order of each 

individual item
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Should you use non-sequentially consistent 

• Does every micro-second count?

• Is this a hot path?

• Is this a problematic spot?

• Will it have massive testing and reviews?

• Is this a known pattern?
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Data Oriented Design

class Object {
int _pos[2];
int _speed;
Model  _model;
const char  _name[NAME_SIZE];
….
int _foo;

};

Consider the following class:
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What is the most expensive operation?

void Object::update( int time) 

{

float f = sqrt(  

_pos[0] + (time* _speed) + 

_pos[1] + (time * _speed ) ) ;

_foo +=  f;

}

1. Load _pos, cache miss, 200 cycles

2. Load speed, same cache line, 3 

cycles

3. Multiply and add, twice, 5 cycles 

twice

4. Square root, 30 cycles

5. Load _foo, cache miss, 200 cycles

6. Add result to _foo, 1 cycle

Total: 450 cycles

_pos

_speed

_model

_name

_foo

Memory
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Can the compiler help?

• 50 out of 450 cycles are real work

Compiler’s domain is the 50 cycles

Not very much…
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Back to the Example

class Object {

int _pos[2];

int _speed;

int _foo;

Model  _model;

const char  _name[NAME_SIZE];

….

};
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The new cost:

void Object::update( int time) 

{

float f = sqrt(  

_pos[0] + (time* _speed) + 

_pos[1] + (time * _speed ) ) ;

_foo +=  f;

}

1. Load _pos, cache miss, 200 cycles

2. Load speed, same cache line, 3 

cycles

3. Multiply and add, twice, 5 cycles, 

twice

4. Square root, 30 cycles

5. Load _foo, cache miss, 200  cycles 

5.   Load _foo, 5 cycles

6.   Add result to _foo, 1 cycle

Total: 250 cycles

_pos

_speed

_foo

_model

_name

Memory
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Can we do better?

Regroup the data    

class Object {

Model  _model;

const char    _name[NAME_SIZE];

….

};

class ObjectPosition{

float _pos[2];

float _speed;

int _foo;

};

for ( auto & object : objects ) {

object.update(time);

}
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The new cost

• Single cache line, multiple objects  

• Shared cost

• On average, fetching will cost us about 40 cycles

• Total cost ~90 cycles
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DoD in one sentence

• Make continuous, tightly packed, chunks of memory that will be 

used consecutively

• Re-group fields according to their usage

• When it is needed, and the transformation that’s needed
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Container Searching for a key/condition

• Load the key

• Load the object selectively

Key1 Key 2 Key 3 Key 4 Key 5 Key 6 Key 7 Key 8 Key 9 Key 

10
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Polymorphism

• shapes is likely to contain:

square, circle, polygon, square, text, rectangle….

for (Shape * currentShape : shapes) {

currentShape->draw();

}
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Polymorphism, Resolution

for (Circle* currentCircle : circles) {

currentCircle->draw();

}

for (Square* currentSquare : squares) {

currentSquare->draw();

}
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Cache Oblivious Algorithms

• Characteristics, not existence

• Attempt to maximize cache hits

• All levels of cache hierarchy

• Can be out-performed by cache aware 
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Analyzing Memory Utilization

• Analyzing using big O notation

• Idealized cache model

• Ignore cache hierarchy

• Ignore replacing policies 

• Ignore associativity 
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Example: Search

Search a sequence of numbers for the highest number, which is 
less than X

• Data is searched many times

• Ignore preparation time

How should we store the sequence?? 
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Attempt #1: Binary Search

• log(n) comparisons

• Given the distance, assume that they will require memory access

• log(n)-log(B) memory accesses are required
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Attempt #2: B-Tree

• Set B to our cache-line size

• We will require log B (N) steps

• Each node will be loaded in one cache line

• O(log (N) / log(B)) memory accesses

• But….
• We need to know B
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Van Emde Boas 

• Full description and analysis is outside the scope

• Set a fully balanced tree

• Recursively divide it to sub-trees

• Each sub-tree is copied to sequential memory

• Use this to search
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Van Emde Boas, intuitive analysis

• Each section is of size B or less
• 2 memory accesses per section

• Section height between log(B) to log(B)/2

• Tree height is log(n)

• Max sections we will visit is log(N)/(log(B)/2)

• This will require 4(log(N)/log(B)) memory accesses
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Thank You
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The Pattern

Singleton* Singleton ::instance () { 

if ( _instance  == nullptr ) {

std::lock_guard<std::mutex> 

lock(_mutex);

if (_instance == nullptr) {

_instance = new Singleton();

}

}

return _instance;

}

Allocate memory

Call C’tor

Assign 
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Attempt #1: Adding temporary

Singleton * Singleton ::instance () { 

if ( _instance == nullptr ) {

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) {

Singleton * tmp = new Singleton();

_instance = tmp;

}

}

return _instance;

}

Optimize out the temporary.

Back to square 1.
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Attempt #2: Outsmart the compiler

• Change tmp to larger scope, say static
• Compiler can still detect this

• Define tmp as extern
• Can still detect this

• Or, place construction after both

• Define helper on other translation unit
• Compiler must assume it can throw

• No inlining

• Link-time inlining kills this attempt
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Attempt #3: Volatile

• Qualify tmp and _instance as volatile
• All side effects of one volatile must be completed before addressing the other

Singleton * Singleton ::instance () { 

if ( _instance == nullptr ) {

std::lock_guard<std::mutex> lock(_mutex);

if ( _instance == nullptr ) {

Singleton * volatile tmp = new Singleton();

_instance = tmp;  // static Singleton * volatile 

}

}

return _instance;

}
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Attempt #3: Volatile, cont’d

Lets inline a constructor:

Singleton * Singleton ::instance () { 

if ( _instance == nullptr ) {

std::lock_guard<std::mutex> lock(_mutex);

if ( _instance == nullptr ) {

Singleton * volatile tmp = new Singleton();

tmp->x = 4 //from the c’tor

_instance = tmp;  

}

}

return _instance;

}

This new 

instruction may be 

reordered



© 2019 by CYBERBIT │ CYBERBIT Proprietary 

Conclusion

Trying to outsmart the compiler is a bad idea
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Attempt #4: Compiler barrier

Singleton * Singleton::instance () { 

if (_instance == nullptr) {

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) {

Singleton * tmp = new Singleton();

// Compiler Barrier here

_instance = tmp;

}

}

return _instance;

}
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What about CPU Re-Ordering

Game Over!
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Attempt #5: Memory Barrier

Singleton * Singleton::instance() { 

if (_instance == nullptr) { 

std::lock_guard<std::mutex> lock(_mutex);

if (_instance == nullptr) { 

Singleton * tmp = new Singleton;  

std::atomic_thread_fence(std::memory_order_seq_sct); 

_instance = tmp; 

} 

} 

return _instance ; 

}

Non atomic 

assignment
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Attempt #5: atomic

Singleton * Singleton ::instance() { 

Singleton * tmp = _instance.load();

if (tmp == nullptr) { 

std::lock_guard<std::mutex> lock(_mutex);

tmp = _instance.load();

if (tmp == nullptr) { 

tmp = new Singleton;

_instance = tmp;  

} 

} 

return tmp ; 

}
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This works!

• But uses sequential consistency

• Can be expensive

• Can we do better?
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Attempt #6: acquire-release

Singleton * Singleton ::instance() { 
Singleton * tmp = _instance.load(std::memory_order_acquire);
if (tmp == nullptr) { 

std::lock_guard<std::mutex> lock(_mutex); 
tmp = _instance.load(memory_order_relaxed); 
if (tmp == nullptr) { 

tmp = new Singleton ; 
_instance.store(tmp, memory_order_release); 

} 
} 
return tmp; 

}
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Attempt #7: do we need the lock?

Singleton * Singleton::instance() {

Singleton* tmp = _instance.load(memory_order_relaxed);

if (tmp == nullptr) {

Singleton * newInstance = new Singleton ;

if (! (_instance.compare_exchange_strong( tmp, newInstance,

memory_order_relaxed) ) ) {

delete newInstance; 

}

}

return _instance.load(memory_order_relaxed);

} 
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Back to the sketching board

C++ 11 states:

If control enters the declaration concurrently while the 

variable is being initialized, the concurrent execution will wait 

for completion of the initialization.

Singleton & Singleton::instance() {

static Singleton instance;

return instance;

}

So, the final answer…


