
Getting C++ Special 
Members Right

Or:
How to get your compiler to work for you without shooting yourself in the foot



Introduction
Things we need to get out of the way first



Key Terms

• Function declaration – tells the compiler what the function signature is

• Function definition – the actual code that will run when the function is 
called. A function definition is also a declaration!

• Shallow copy – copies pointers and references themselves

• Deep copy – copies pointed-to and referenced objects

• Rule – every rule mentioned here is not a rule of the language but rather a 
rule of thumb. Some are taken from the C++ Core Guidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


History (pre c++ 11)

To prevent a function being called it could be:
• Declared but never defined

• This would leave the error catching to the linker. We prefer catching errors early

• If another translation unit defined such a function, no error would even be generated

• Less of a problem for member functions

• Not declared
• Error catching will happen at compiler (good!)

• Not explicit 

• Might be accidentally added

• Does not prevent implicit conversion



C++11 – Deleted Functions

A function can be prevented from being used by defining it as = delete; 
This Can only be done at the first declaration.
• Error catching will happen at compile time
• Explicit
• Deleted functions participate in overload resolution

This does not only apply to special members!

void foo(bool);
void foo(int) = delete;

struct Base {
int foo();

};

struct Derived : public Base {
int foo() = delete;

};



What are special member functions?

Member functions that the compiler will automatically generate a 
declaration for if no user declaration exists and certain criteria are met.

• Default Constructor

• Copy Constructor

• Move Constructor

• Copy assignment

• Move Assignment

• Destructor



Default Special Member 
Functions



All Special Member Functions

• Will only be declared if no user declaration of the same function 
exists

• Will only be default defined if declared and if possible, otherwise will 
be deleted

• Can be forced to be defined using = default;

This is user-declared and default-defined

• Can be forced to be deleted using = delete;



All Default Special Member Functions

• Will perform their operation on all base classes and members of the 
class, in initialization order

• Are public

• Are inline

• Are not virtual

• Are noexcept as appropriate

• Are constexpr if appropriate

• Are trivial if appropriate

• Does The Right Thing™ (usually)

struct Dog : public Animal {
bool trained;
int age;

};



Default Copy Functions

• Will perform a shallow copy

• Are implicit

• Will receive their parameter by const& if possible, otherwise by 
non-const reference.



Default
User

Default 
constructor

Copy 
constructor

Copy 
operator=

Move 
constructor

Move 
operator=

Destructor

Nothing YES YES YES YES YES YES

Any 
constructor

NO YES YES YES YES YES

Default 
constructor

NO YES YES YES YES YES

Copy 
constructor

NO NO YES NO NO YES

Copy 
operator=

YES YES NO NO NO YES

Move 
constructor

NO DELETED DELETED NO NO YES

Move 
operator=

YES DELETED DELETED NO NO YES

Destructor YES YES YES NO NO NO

Source: https://mariusbancila.ro/blog/2018/07/26/cpp-special-member-function-rules/

https://mariusbancila.ro/blog/2018/07/26/cpp-special-member-function-rules/


User Defined Special Member 
Functions



Types of Types

Types can be very broadly categorized into 4 kinds:

• Non owning – ex. std::span, std::complex. Will probably 
need none of the special members to be user-declared.

• Owning – ex. std::vector. Will probably need some or 
all of the special members to be user-defined. 

• Move-only – ex. std::unique_ptr. Will probably need all 
of the special members to be user-defined or deleted.

• Hierarchy – ex. std::ios_base. Special case (sort of)

Regular

Manager



struct Base {

Base() = default;

virtual ~Base() {}

Base(Base const&) = default;

Base& operator=(Base const&) = default;

};



struct Base {

Base() = default;

virtual ~Base() {}

Base(Base const&) = delete;

Base& operator=(Base const&) = delete;

};



Default Constructor

• Any constructor that can take zero parameters

• Should be noexcept

• Should be simple and cheap

• Should always be defined. = default is also a definition (and 
often a very good one)

• Should avoid initializing using static values. Use in-class initialization 
instead



(Old) Rule of Three

If a class needs to declare a destructor, copy constructor
or copy assignment, it needs to declare all three.



class CyclicBuffer {

std::size_t size = 0;

std::size_t head = 0;

std::size_t tail = 0;

char* data = nullptr;

public:

CyclicBuffer() = default;

CyclicBuffer(int size)

: size(size)

, data(new char[size])

{}

~CyclicBuffer() {

delete[] data;

}

CyclicBuffer(
CyclicBuffer const& other)

: size(other.size)

, head(other.head)

, tail(other.tail)

, data(new char[size])

{

std::copy(other.data,
other.data + size,
data);

}

.

.

.

};



CyclicBuffer& operator=(CyclicBuffer const& other) {

if (this != &other) {

size = other.size;

head = other.head;

tail = other.tail;

delete[] data;

data = new char[size];

std::copy(other.data, other.data + size, data);

}

}

CyclicBuffer& operator=(CyclicBuffer const& other) {

size = other.size;

head = other.head;

tail = other.tail;

delete[] data;

data = new char[size];

std::copy(other.data, other.data + size, data);

}

All done, right?

1. What will happen in the case of self assignment, e.g. buffer1 = buffer1; ?
2. What about exception safety?

CyclicBuffer& operator=(CyclicBuffer const& other) {

if (this != &other) {

size = other.size;

head = other.head;

tail = other.tail;

delete[] data;

data = nullptr;

data = new char[size];

std::copy(other.data, other.data + size, data);

}

}



CyclicBuffer& operator=(CyclicBuffer const& other) {

if (this != &other) {

size = other.size;

head = other.head;

tail = other.tail;

delete[] data;

data = nullptr;

data = new char[size];

std::copy(other.data, other.data + size, data);

}

}

Now we are all done, right?

• We are still paying the price on every use for the rear case
• This is still only basic exception safety
• Most of the copying code is duplicated with the copy constructor



Copy and Swap (a.k.a Rule of 3.5)

Let’s add a non throwing swap method (this is recommended for most 
classes)

friend void swap(CyclicBuffer& a, CyclicBuffer& b) noexcept {

using std::swap;

swap(a.size, b.size);

swap(a.head, b.head);

swap(a.tail, b.tail);

swap(a.data, b.data);

}



Copy and Swap (a.k.a Rule of 3.5)

Now we will implement the copy assignment using the following boilerplate:

CyclicBuffer& operator=(CyclicBuffer other) noexcept {

swap(*this, other);

return *this;

}

• Self assignment protection is free

• Strong exception safety

• No code duplication

But… But… But…
C++ 11!

Move semantics!



Adding Move

All we need to do is add a boilerplate move constructor

CyclicBuffer(CyclicBuffer&& other) noexcept : CyclicBuffer() {

swap(*this, other);

}

The assignment operator we wrote before will now be also a “fake” 
move assignment. Since it accepts it’s parameter by value, it will move-
construct it if it can!

Move operations should always be noexcept !



class CyclicBuffer {

std::size_t size = 0;

std::size_t head = 0;

std::size_t tail = 0;

char* data = nullptr;

public:

CyclicBuffer() = default;

CyclicBuffer(int size)

: size(size)

, data(new char[size])

{}

~CyclicBuffer() {

delete[] data;

}

CyclicBuffer(CyclicBuffer const& other)

: size(other.size)

, head(other.head)

, tail(other.tail)

, data(new char[size])

{

std::copy(other.data, other.data + size, data);

}

CyclicBuffer(CyclicBuffer&& other) noexcept

: CyclicBuffer()

{

swap(*this, other);

}

CyclicBuffer& operator=(CyclicBuffer other) noexcept {

swap(*this, other);

return *this;

}

friend void swap(CyclicBuffer& a, CyclicBuffer& b)
noexcept

{

using std::swap;

swap(a.size, b.size);

swap(a.head, b.head);

swap(a.tail, b.tail);

swap(a.data, b.data);

}

};



(New) Rule of 0/3/4 (+ 0.5)

Destructor Copy 
constructor

Copy 
assignment

Move 
constructor

Move 
assignment

No resource management (RTTI) NO NO NO NO NO

No advantage to moving YES YES YES NO NO

Non-copyable YES DELETED DELETED YES YES

Copyable and movable YES YES YES YES REDUNDANT

• Very easy to implement
• Very easy to get right
• Good-enough for 99% of cases – near optimal performance



Thank you


