Getting C++ Special
Members Right

Or:
How to get your compiler to work for you without shooting yourself in the foot

Introduction

Things we need to get out of the way first

Key Terms

* Function declaration — tells the compiler what the function signature is

* Function definition — the actual code that will run when the function is
called. A function definition is also a declaration!

* Shallow copy — copies pointers and references themselves
* Deep copy — copies pointed-to and referenced objects

* Rule — every rule mentioned here is not a rule of the language but rather a
rule of thumb. Some are taken from the C++ Core Guidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

History (pre c++ 11)

To prevent a function being called it could be:

* Declared but never defined
* This would leave the error catching to the linker. We prefer catching errors early
 If another translation unit defined such a function, no error would even be generated
* Less of a problem for member functions
* Not declared
* Error catching will happen at compiler (good!)
* Not explicit
* Might be accidentally added
* Does not prevent implicit conversion

C++11 — Deleted Functions

A function can be prevented from being used by defining it as = delete;
This Can only be done at the first declaration.

* Error catching will happen at compile time
* Explicit
* Deleted functions participate in overload resolution

This does not only apply to special members!

void foo(bool); struct Base {
void foo(int) = delete; int foo();
¥

struct Derived : public Base {
int foo() = delete;

}s

What are special member functions?

Member functions that the compiler will automatically generate a
declaration for if no user declaration exists and certain criteria are met.

* Default Constructor
* Copy Constructor

* Move Constructor
* Copy assignment

* Move Assignment

* Destructor

Default Special Member
Functions

All Special Member Functions

* Will only be declared if no user declaration of the same function
exists

* Will only be default defined if declared and if possible, otherwise will
be deleted

* Can be forced to be defined using = default;
This is user-declared and default-defined

* Can be forced to be deleted using = delete;

All Default Special Member Functions

e Will perform their operation on all base classes and members of the
class, in initialization order

* Are pUb|IC struct Dog : public Animal {
e Are inline k.)ozl trained;

. int age;
* Are not virtual }s

* Are noexcept asappropriate
* Are constexpr if appropriate
* Are trivial if appropriate

* Does The Right Thing™ (usually)

Default Copy Functions

* Will perform a shallow copy
e Are implicit

* Will receive their parameter by const& if possible, otherwise by
non-const reference.

Default|Default Copy Copy Move Move
User constructor constructor operator= constructor operator=

constructor
Default
constructor
Copy
constructor
operator=
constructor

operator=

Source: https://mariusbancila.ro/blog/2018/07/26/cpp-special-member-function-rules/

https://mariusbancila.ro/blog/2018/07/26/cpp-special-member-function-rules/

User Defined Special Member
Functions

Types of Types

Types can be very broadly categorized into 4 kinds:

* Non owning — ex. std: :span, std::complex. Will probably
need none of the special members to be user-declared.

* Owning — ex. std: :vector. Will probably need some or
all of the special members to be user-defined.

* Move-only — ex. std: :unique_ptr. Wil
of the special members to be user-d

* Hierarchy — ex. std: :ios_base. Specia

probably need all
efined or deleted.

case (sort of)

— Regular

—_

— Manager

struct Base {
Base() = default;
virtual ~Base() {}
Base(Base const&) = default;
Base& operator=(Base const&) = default;

s

struct Base {
Base() = default;
virtual ~Base() {}
Base(Base const&) = delete;
Base& operator=(Base const&) = delete;

s

Default Constructor

* Any constructor that can take zero parameters
e Should be noexcept
* Should be simple and cheap

* Should always be defined. = default is also a definition (and
often a very good one)

* Should avoid initializing using static values. Use in-class initialization
instead

(Old) Rule of Three

If a class needs to declare a destructor, copy constructor
or copy assignment, it needs to declare all three.

class CyclicBuffer {
std::size t size = 0;
std::size t head = 0;
std::size t tail = 0;
char* data = nullptr;
public:
CyclicBuffer() = default;
CyclicBuffer(int size)
: size(size)
, data(new char[size])
1}
~CyclicBuffer() {
delete[] data;

CyclicBuffer(
CyclicBuffer const& other)

: size(other.size)
, head(other.head)
, tail(other.tail)

, data(new char[size])

std: :copy(other.data,
other.data + size,
data);

}s

CyclicBuffer& operator=(CyclicBuffer const& other) {
if (this != &other) {

size = other.size;

head = other.head;

tail = other.tail;

delete[] data;

data = nullptr;

data = new char[size];

std: :copy(other.data, other.data + size, data);

}
All done, right?

1. What will happen in the case of self assignment, e.g. bufferl = bufferi;
2. What about exception safety?

CyclicBuffer& operator=(CyclicBuffer const& other) {
if (this != &other) {

size = other.size;

head = other.head;

tail = other.tail;

delete[] data;

data = nullptr;

data = new char[size];

std: :copy(other.data, other.data + size, data);

¥

Now we are all done, right?

 We are still paying the price on every use for the rear case
* This is still only basic exception safety
* Most of the copying code is duplicated with the copy constructor

Copy and Swap (a.k.a Rule of 3.5)

Let’s add a non throwing swap method (this is recommended for most
classes)

friend void swap(CyclicBuffer& a, CyclicBuffer& b) noexcept {
using std: :swap;
swap(a.size, b.size);
swap(a.head, b.head);
swap(a.tail, b.tail);
swap(a.data, b.data);

Copy and Swap (a.k.a Rule of 3.5)

Now we will implement the copy assignment using the following boilerplate:

CyclicBuffer& operator=(CyclicBuffer other) noexcept {
swap(*this, other);

return *this;
But... But... But...

} C++ 11!
Move semantics!

* Self assignment protection is free
e Strong exception safety

* No code duplication

Adding Move

All we need to do is add a boilerplate move constructor

CyclicBuffer(CyclicBuffer&& other) noexcept : CyclicBuffer() {
swap(*this, other);

The assignment operator we wrote before will now be also a “fake”

move assignment. Since it accepts it’s parameter by value, it will move-
construct it if it can!

Move operations should always be noexcept !

class CyclicBuffer { CyclicBuffer(CyclicBuffer&& other) noexcept

std::size t size = ©; : CyclicBuffer()
std::size_t head = 0; {
std::size t tail = ©; swap(*this, other);
char* data = nullptr; }
public: CyclicBuffer& operator=(CyclicBuffer other) noexcept {
CyclicBuffer() = default; swap(*this, other);
CyclicBuffer(int size) return *this;
: size(size) }
, data(new char[size]) friend void swap(CyclicBuffer& a, CyclicBuffer& b)
noexcept
{} ‘

~CyclicBuffer() {
delete[] data;
}
CyclicBuffer(CyclicBuffer const& other)
: size(other.size)
, head(other.head)
, tail(other.tail)

, data(new char[size])

using std::swap;

swap(a.size, b.size);
swap(a.head, b.head);
swap(a.tail, b.tail);
swap(a.data, b.data);

s

std::copy(other.data, other.data + size, data);

(New) Rule of 0/3/4 (+ 0.5)

Copy Copy Move Move
constructor | assignment | constructor | assignment
No resource management (RTTI) R\[e] NO NO NO NO

No advantage to moving YES YES YES NO NO
Non-copyable YES DELETED DELETED YES YES
Copyable and movable YES YES YES YES REDUNDANT

* Very easy to implement
* Very easy to get right
e Good-enough for 99% of cases — near optimal performance

Thank you

