
Generators, Coroutines
and Other Brain

Unrolling Sweetness
A D I S H A V I T

@adishavit :: videocortex.io

Functions & Sub-Routines
• Let’s iterate!

• One function:
1. Iterates

2. Operates

• What if we need another operation?
• Sum?

• Both?

The concept of a function, or sub-

routine goes back to one of the

first computers, the ENIAC, in the

late 1940s and the term sub-

routine is from the early 1950s.

D I D Y O U K N O W ?

1947

Functions & Sub-Routines
• Let’s draw!

• One function:
1. Iterates

2. Operates

Assumes putpixel()
1. Available;

2. Correct signature;

3. Does the right thing;

4. Returns control to caller!

S u b r o u t i n e s
a r e e a g e r
a n d c l o s e d

E A G E R P R O C E S S I N G

“Closed” in the sense that they

only return after they have

iterated over the whole

sequence. They eagerly

process a whole sequence.

▪ Inversion-of-Control
▪Callback Hell
▪still eager

▪ Function pointers
▪ Lambdas
▪ Callable template parameters or Concepts

E X T E R N A L C A L L A B L E S

C
A

LL
B

A
C

K
S

C a n w e B r e a k t h e m o p e n ?

If only there was a way to “flip” these

iterating functions “inside-out” and iterate

over a sequence without pre-committing to

a specific operation.

Iterators
• Iterator Objects and Iterator Adaptors

• “Stand-alone” types;

• Often indirectly or implicitly coupled to a sequence

• Examples from the C++ standard:

• std::istream_iterator
• std::reverse_iterator
• std::recursive_directory_iterator

The concept of Iterators has been

with C++ since the STL was

designed by Alex Stepanov and

together with the rest of the STL

became part of C++98.

D I D Y O U K N O W ?

1998

User defined iterators
OpenCV’s cv::LineIterator

• Typical Iterator API

• No explicit sequence

• Lazily generate elements

• Incremental access to pixels
along a line

User defined iterators

Example Usage

O B J E C T S T H A T L A Z I L Y G E N E R A T E V A L U E S A R E C A L L E D

GENERATORS

▪awkward Coupling
▪Distributed Logic

▪ Horrible public members
▪ Dereferencing operator * requires casting

N O T T O M E N T I O N

im
p

er
fe

c
t

a b s t r a c t i o n

awkward Coupling
When do we stop incrementing?

• cv::LineIterator: at most it.count times

• std::istream_iterator: when == std::istream_iterator()

• std::reverse_iterator: when == sequence rend()

• std::recursive_directory_iterator when == std::end(it)

PITFALL! User side runtime coupling of begin and end

ranges
• Abstraction layer on top of iterators

• The answer to The Awkward Coupling

• C++20 Ranges encapsulate:
• A begin and end iterator-pair;

• An iterator + size;

• An iterator and stopping condition

• A single object that makes STL iterators and
algorithms more powerful by making them
composable.

• Create pipelines to transform values

Ranges are coming to C++20 and

are an amazing new addition to

the standard library! Three pillars:

Views, Actions, and Algorithms.

D I D Y O U K N O W ?

2020

Distributed logic
Cousin of Callback Hell:

• Distributed logic:
• Logic split between ctor and

methods like operator++

• Centralized-state:
• Intermediate computation

variables stored as (mutable)
members.

Centralized logic
eager & Closed

Distributed logic
lazy & Open

Logic Puzzle

C a n w e h a v e n i c e t h i n g s ?

If only there was a way to write easy to

reason about, serial algorithms with local

scoped variables while still abstracting way

the iteration…

coroutines
A Coroutine is a function that:

1. Can suspend execution;

2. Resume later;

3. Preserve local state;

4. Allows re-entry more than once;

5. Non-pre-emptive → Cooperative
The term A coroutine was coined

by Melvin Conway in 1958. Boost

has had several coroutine libraries

at least since 2009 and some C

coroutine libraries were well

known since before 2000.

D I D Y O U K N O W ?

1958

“Coroutines make it trivial to define your own ranges.”
— Eric Niebler

just like what we want!

coroutines
A Coroutine is a function that:

1. Can suspend execution;

2. Resume later;

3. Preserve local state;

4. Allows re-entry more than once;

5. Non-pre-emptive → Cooperative
The term A coroutine was coined

by Melvin Conway in 1958. Boost

has had several coroutine libraries

at least since 2009 and some C

coroutine libraries were well

known since before 2000.

D I D Y O U K N O W ?

1958

“Coroutines make it trivial to define your own ranges.”
— Eric Niebler

?

C++20 coroutines
• The answer to Distributed Logic

• A function is a coroutine if any of the following:
• Uses co_await to suspend execution until resumed;

• Uses co_yield to suspend + returning a value;

• Uses co_return to complete + return a value.

• Return type must satisfy some requirements.
Coroutines suspend execution by

returning to the caller and the data

required to resume execution is

stored separately from the caller-

stack. To make this even more

confusing they are called Stackless

do distinguish them from Stackful

coroutines which use CPU/OS

fibers)).

D I D Y O U K N O W ?

2020

Cannot tell coroutine from function by signature

The Simplest code

• What does zoro() return?

• The return type is… ?

• Is it a coroutine?

The Simplest code

• What does zoro() return? 42

• The return type is… int

• Is it a coroutine? No

• What does coro() return?

• The return type is… ?

• Is it a coroutine?

The Simplest code

• What does zoro() return? 42

• The return type is… int

• Is it a coroutine? No

• What does coro() return? Not 42
• The return type is… ? Not int
• Is it a coroutine? Yes

The Simplest code

Or

Infinite Ranges

▪No auto return type
▪No std coro library!

▪ Non-conforming MSVC infers std::experimental::generator<T> for auto
▪ No such thing as std::experimental::generator<T>
▪ Until then, use e.g. Lewis Baker’s cppcoro

M S V C E X T E N S I O N S

d
ec

ep
ti

o
n

Spin Cycle

Spin Cycle

Treeversal

// 4, 2, 5, 1, 6, 3

Treeversal

// 4, 2, 5, 1, 6, 3

▪Dangling references
▪decapitation
▪Limitations

▪ Beware of temporaries and references
▪ Pass by value
▪ Beware of inadvertent execution

N O T P E R F E C T Y E T

p
it

fa
ll

s

Dangling References
• Coroutine execution starts after

calling begin()

• s is a ref to temp string which goes
out of scope before it is executed!

BOOM!
From blog post by Arthur O’Dwyer bit.ly/2NDSF9G

Tip: Take coroutine arguments by value

https://bit.ly/2NDSF9G

decapitation
• Coroutine execution starts after calling begin()

• Checking for an empty range (begin()==end()) starts execution

• Returning the generator after such a check (with std::move) will
likely result in skipping the first element.

Tip: Be careful when handling initially suspended coros

▪Missing features
▪No std coro library!
▪QOI Library Issues
▪QoI Compiler issues

▪ No plain return statements
▪ No placeholder return types (auto or Concept)
▪ constexpr functions, constructors, destructors,

and the main function cannot be coroutines

N O T P E R F E C T Y E T

li
m

it
a

ti
o

n
s

Resources
• A massive, well maintained, list of resources, papers, articles and

videos from the diligent MattPD bit.ly/3436zZ3

• en.cppreference.com/w/cpp/language/coroutines

• The #coroutines channel on the C++ Slack

• More details on my blog videocortex.io/2019/Brain-Unrolling

@adishavit :: videocortex.io
Thank you!

https://bit.ly/3436zZ3
https://en.cppreference.com/w/cpp/language/coroutines
http://videocortex.io/2019/Brain-Unrolling/

