
“Functional-Style” Programming
and Functional Objects in C++

Presented by Dr. Ofri Sadowsky, CoreCpp Meetup, 27/6/2019

Ofri Sadowsky is an employee of Harman

This lecture

Is about…

• Motivation for using “functional
style” programming in C++

• Explaining some of the tools that
C++ offers for functional-style
programming

• Focus mostly on “functional”
objects

• Suggesting some practical tips
about the use and misuse of
functional-style programming in
C++

Is NOT about…

• A scientific explanation of
functional programming

• A complete usage guide of
functionals in C++

• Absolute rules

Part 1: Functional Programming
in a Sunflower-Seed Shell*

* Less than a nutshell

What is functional programming?

From Wikipedia:

• “functional programming is a programming paradigm… that treats
computation as the evaluation of mathematical functions and avoids
changing-state and mutable data.”

• “a function's return value depends only on its arguments, so calling a
function with the same value for an argument always produces the same
result. This is in contrast to imperative programming where, in addition to
a function's arguments, global program state can affect a function's
resulting value.”

• “Programming in a functional style can be accomplished in languages that
are not specifically designed for functional programming, such as with Perl,
PHP, C++11, and Kotlin.”

What is functional programming?

From Wikipedia:

• “functional programming is a programming paradigm… that treats
computation as the evaluation of mathematical functions and avoids
changing-state and mutable data.”

• “a function's return value depends only on its arguments, so calling a
function with the same value for an argument always produces the same
result. This is in contrast to imperative programming where, in addition to
a function's arguments, global program state can affect a function's
resulting value.”

• “Programming in a functional style can be accomplished in languages that
are not specifically designed for functional programming, such as with Perl,
PHP, C++11, and Kotlin.”

What is functional programming?

From Wikipedia:

• “functional programming is a programming paradigm… that treats
computation as the evaluation of mathematical functions and avoids
changing-state and mutable data.”

• “a function's return value depends only on its arguments, so calling a
function with the same value for an argument always produces the same
result. This is in contrast to imperative programming where, in addition to
a function's arguments, global program state can affect a function's
resulting value.”

• “Programming in a functional style can be accomplished in languages that
are not specifically designed for functional programming, such as with Perl,
PHP, C++11, and Kotlin.”

What is functional programming?

From Wikipedia:

• “functional programming is a programming paradigm… that treats
computation as the evaluation of mathematical functions and avoids
changing-state and mutable data.”

• “a function's return value depends only on its arguments, so calling a
function with the same value for an argument always produces the same
result. This is in contrast to imperative programming where, in addition to
a function's arguments, global program state can affect a function's
resulting value.”

• “Programming in a functional style can be accomplished in languages that
are not specifically designed for functional programming, such as with Perl,
PHP, C++11, and Kotlin.”

Recursion in Functional Programming

• Functional Programming has no state variables, and no assignment
operations.

• Therefore, no iterators.

• This means heavy reliance on recursion.

• Few people use it in daily practice, but it’s useful as an abstraction
and as an alternative thought direction.

• In some cases, like metaprogramming tasks, it’s the only working
solution.

Case Study 1: Vector Operations

double dotProduct(Vector const & v1,

Vector const & v2, size_t size)

{

if (size == 0) {

return 0.0;

}

else {

return dotProduct(v1,v2,size-1)+

v1[size-1] * v2[size-1];

}

}

bool areEqual (Vector const & v1,

Vector const & v2, size_t size)

{

if (size == 0) {

return true;

}

else {

return areEqual(v1,v2,size-1) &&

(v1[size-1] == v2[size-1]);

}

}

Now, don’t these look sort of similar?

class Vector;

/// A hypothetical class that

/// represents an algebraic

/// vector of doubles

Vector Operations in Template Form

template<class TOut, class TIn>
using BinaryFunc = TOut (*) (TIn const &, TIn const &);

template<class TRes, class TInter>
TRes engine(BinaryFunc<TRes, TInter> reducer,

BinaryFunc<TInter, double> oper, TRes const & emptyRes,
Vector const & v1, Vector const & v2, size_t size)

{
if (size == 0) {
return emptyRes;

}
else {
return reducer(

engine(reducer, oper, emptyRes, v1, v2, size-1),
oper(v1[size-1], v2[size-1]));

}
}

Concretizing Vector Operations

double mult(double d1, double d2)

{ return d1 * d2; }

double add(double d1, double d2)

{ return d1 + d2; }

double dotProduct(Vector const & v1,

Vector const & v2, size_t size)

{

return engine(add, mult, 0.0,

v1, v2, size);

}

bool eq(double d1, double d2)

{ return (d1 == d2); }

bool and(bool b1, bool b2)

{ return (b1 && b2); }

bool areEqual (Vector const & v1,

Vector const & v2, size_t size)

{

return engine(and, eq, true,

v1, v2, size);

}

Case Study 2: Numerical Integration

using functional = double (*)(double);

double integrate(functional f, double begin, double end,
double step) {

double result = 0.0;
for (size_t i = 0; begin + double(i) * step < end; i++) {
result += f(begin + double(i) * step) * step;

}
return result;

}

double square(double x) { return x * x; }

double integral = integrate(&square, 0.0, 3.0, 0.001);

Nice! But can we integrate an integrator?
The answer is yet to come.

Functional Objects

• In a simple description, functional objects are objects that behave like
functions.
• A user can “call” on the object (invoke), passing arguments, and receive a

return value.

• In C++, this is achieved by overloading operator() for a class.

• In a broader sense, one can argue that with any method (or function),
if one of the parameters can be “invoked”, that parameter is a
“functional object”.
• Consider the Template Method design pattern (coming soon).

• The difference between the TM Pattern and operator() is only syntactical.

Functional Objects

• Unlike functions in FP, functional objects have a state (i.e. member
variables) that can affect the outcome of invocation.
• As long as the object is constant, the function outcome for the same input

stays the same.
• If the state of the object changes between invocations, it may produce a

different outcome (hidden function arguments)
• The invocation can have side effects that change the state of the functional

object (write new values to members) or of other objects that it interacts
with.

• Functional objects are not part of functional programming in the
classical definition.
• Is it good or bad?

The Template Method Pattern (side note)

class BaseAlgorithm {

public:

double run() {

double value = getSpecialData();

return value * value;

}

protected:

virtual double getSpecialData() = 0;

};

Case Study 2: Integrator Functional Object

using functional =

double (*)(double);

double integrate(functional f,

double begin, double end,

double step);

class Integrator {

public:

Integrator(functional f,

double begin, double step);

double operator()(double x) const

{

return integrate(mIntegrand,

mBegin, x, mStep);

}

private:

functional mIntegrand;

double mBegin;

double mStep;

};

Case Study 2: Integrator Functional Object
with Template
using functional =

double (*)(double);

double integrate(functional f,
double b, double e, double s);

class Integrator {
public:

Integrator(functional f,
double b, double s);

double operator()(double x) const;

private:
// see above...

};

template<class TIntegrand>

double templateIntegrate(

TIntegrand const & integrand,

double b, double e, double s)

{

double result = 0.0;

for (size_t i = 0;

b + double(i) * s < e; i++) {

result += integrand(

b + double(i) * s) * s;

}

return result;

}

What Did We Learn So Far?

• In classical functional programming, everything is a function.

• The simplest form of a functional object in C++ (and C!) is a function
pointer.

• In C++ the notion of a functional object can be expressed by an
overloaded operator() or, in a broader sense, by overridden virtual
methods.

• Functional objects are an essential element of generic programming,
e.g.
• Code template (functions, classes)

• Design patterns (Template Method, Observer, …)

Part 2: C++11 Functional Objects

Functional Object Categories in C++11+
Category Form / Example

Global function pointers using functional = double (*)(double);

Member function pointers class MyClass { double someMethod(double); };

using MFunc = double (MyClass::*)(double);

MFunc f = &MyClass::someMethod;

MyClass obj;

double v = (obj.*f)(5.0);

“Crafted” functional class class Integrator { double operator()(double); };

Virtual methods class Algorithm { virtual double f(double) = 0; };

std::bind objects auto integrator = std::bind(integrate, square,

0.0, std::placeholders::_1, 0.001);

double integral = integrator(3.0);

Lambda objects auto f = [](double x) { return x * x; };

double v = f(5.0);

std::function using functor = std::function<double(double)>;

functor f = /* most of the above...*/;

double v = f(5.0);

Argument Binding

• “Bind” is an “operator” on a functional object and other parameters, which returns
another functional object:

double add(double x, double y) { return x + y; }

auto add10 = std::bind(add, _1, 10.0); // _1 is a placeholder for an argument passed to add10

• In this example, “add” is the bound functional object, and “add10” is the binding
functional object.

• add10.operator() takes one parameter and forwards it to the bound functional
along with a bound argument, which happens to be 10.0. ➔ Effectively, “add10” is a
unary functional object.

• The roots of “bind” go back to Lambda Calculus – a theoretical model of computability
and functional programming.

• The C++ syntax and usage rules of std::bind are (subjectively) cryptic and often
confusing.

• Clang-Tidy recommends to “prefer a lambda to std::bind”, and I join.

Lambda Objects

• The term “Lambda” comes from Lambda Calculus (LC), mentioned
above, where it represents a functional.

• C++11+ defines a new syntax (“syntactic sugar”) for instantiation of
functional objects, which can replace most of the hand-crafted
overloads of operator(), and simultaneously add bind capabilities.
These objects are “lambda objects” or just “lambdas”.

• C++ lambdas are slightly abusing the original LC lambdas because
they are real objects, they can mutate a global program state, and can
even have a mutable state of their own.

• But it’s a catchy name and the abuse is small, and if they’re
immutable, well, it’s close enough.

What’s in a Lambda?

• Much more detail and examples in Andreas Fertig’s presentation of Core C++
2019: https://www.andreasfertig.info/talks_dl/afertig-corecpp-2019-cpp-
lambdas-demystified.pdf

• Here’s the short of it.

double add(double x, double y) { return x + y; }

void myFunction() {

double num = 10.0;

auto innerLambda = [num](double y)

{

return add(num, y);

}

double sum = innerLambda(5.0);

std::cout << “sum = “ << sum << std::endl;

}

capture

parametersbody

invocation

https://www.andreasfertig.info/talks_dl/afertig-corecpp-2019-cpp-lambdas-demystified.pdf

What’s in a Lambda?

• Much more detail and examples in Andreas Fertig’s presentation of Core C++
2019: https://www.andreasfertig.info/talks_dl/afertig-corecpp-2019-cpp-
lambdas-demystified.pdf

• Here’s the short of it.

double add(double x, double y) { return x + y; }

void myFunction() {

double num = 10.0;

auto innerLambda = [num](double y)

{

return add(num, y);

}

double sum = innerLambda(5.0);

std::cout << “sum = “ << sum << std::endl;

}

capture

parametersbody

invocation

• capture defines simultaneously class
members and class constructor.

• parameters define the signature of a
public operator().

• body is the function body of
operator()

• auto is required because the class
name is compiler-generated and we
cannot know it.

• invocation calls the operator()
method for the lambda object.

https://www.andreasfertig.info/talks_dl/afertig-corecpp-2019-cpp-lambdas-demystified.pdf

Things to Remember about C++ Lambda

• Lambdas define classes and their instantiations.

• After the instantiation, the lambda is a full-blown object.

• The captured entities (if they exist) are members of the lambda
object.

• A lambda object can be copied (including copy of the captures),
moved (including move of the captures), or passed by reference.

• The concrete type of the lambda is inaccessible, so if it is passed to a
generic algorithm (like integrate), the type must be abstracted.
• Write the algorithm as a template, or
• Wrap the lambda object by a std::function object.

std::function

template<class R, class... Args>
class function<R(Args...)>;

using functor = std::function<double(double)>;
functor f = /* most of the above */;
double v = f(5.0);

• A specialization of std::function is a well-defined and accessible type.
• Any instance of this type can host (or contain) any callable object that

matches the type’s signature.
• Yes, different instances of the same std::function type can host callable objects of

different types.
• Yes, this can be source for much trouble…

• A std::function object is invokable, with the signature of operator()
determined from the template specialization.

std::function – a Peek Under the Hood

What does it take to construct a std::function instance?

template<class F> function(F f); with F being an invokable type.

1. Allocate as much memory as needed to host an instance of F.

2. Construct an instance of F (copy or move from f).

3. Move the instance to the allocated memory (in-place move construct).

4. Keep pointers to lifetime-control member functions of F:
• Copy constructor, in case one wishes to copy the hosting std::function instance (what

about move?)
• Destructor for the time of destructing the hosting std::function instance
• operator() which will be called from the hosting instance’s operator()
• …

std::function – Observations

• Heavy-size object, expensive to construct, expensive to copy.

• Relatively cheap to invoke – use a member function pointer bound to
an internally-stored instance.

• The content and the actual function code cannot be predicted before
construction or deduced after the construction (type-erased).

• Some things are impossible.

class A {
public:

void operator()() { callImpl(); }
virtual void callImpl();
double member1;

};

class B : public A {
public:

void callImpl() override;
char member2[100];

};

void foo(A const & obj) {
std::function<void(void)> functor = obj;
functor();

}

C++11 Functional Objects – Summary

• C++11 defines several types and syntaxes to simplify the definition
and construction of functional objects:
• std::bind

• Lambdas

• std::function

• All these types are full-blown objects (lambdas can be simpler).

• They loosely represents functionals in the FP paradigm, but with
some important differences (can affect global and own state,
std::function can be reassigned).

• Using them has benefits and prices

Part 3: A Few Handy Rules

A Few Handy Rules

1. Prefer a lambda to std::bind.
• Recommended by Clang-Tidy, already mentioned.

2. Prefer a lambda to hand-crafted classes with overloaded operator()
• Lambdas simplify your life and prevent funny corner cases.

3. In my “generic” algorithm, choose lambda or std::function?
• Lambda usually requires the algorithm to be templated over the concrete

type of the functional. It’s often more efficient but exposes the intrinsics.

• std::function is type-erased and supports better abstraction and
encapsulation, with some cost of performance.

A Few Handy Rules

4. Refrain from nested lambdas (lambda defined inside another
lambda)
• Significant obfuscation

• Usually can be refactored into methods or separate nested object captured
into the larger lambda.

5. Capture with consideration, try to be minimalistic (no [&] [=])
• Reduce lambda size and avoid funny side effects

6. Reduce copy/pass-by-value of callable objects
• Possibly high performance price

A Few Handy Rules

7. Choose wisely between functional objects and plain-ol’
polymorphism.
• Many times, if you know exactly how a function should behave,

polymorphism is the right answer for you.

• If you have a collection of functional objects with equal captures or common
content, a real class is probably a better answer.

