
1©2019 Check Point Software Technologies Ltd. ©2019 Check Point Software Technologies Ltd.

Noam Weiss | Architect

Core C++ Meetup

DEFENSIVE PROGRAMING

2©2019 Check Point Software Technologies Ltd.

• What is Defensive Programing

• Some Defensive Programing Theory

• Case Studies

Agenda

3©2019 Check Point Software Technologies Ltd.

• Does it includes input validation?

̶ How about input sanitation?

• How does it relates to contracts?

• Which of these actions is defensive:
̶ Assertion

̶ Logging

̶ Sanitation

̶ Exception

What is Defensive Programing

4©2019 Check Point Software Technologies Ltd.

For Wikipedia:

“

Defensive programming is a form of defensive design intended to ensure the
continuing function of a piece of software under unforeseen circumstances.

Overly defensive programming, however, may safeguard against errors that will
never be encountered, thus incurring runtime and maintenance costs. There is also
the risk that the code traps or prevents too many exceptions, potentially resulting in
unnoticed, incorrect results.

”

What is Defensive Programing

5©2019 Check Point Software Technologies Ltd.

• Congratulations: Your code works!
̶ It’s fast! It’s clean! It’s great!

̶ Assuming everything behaves correctly…

• So you start hardening your code…
̶ Which raise some question:

̶ What you should be hardening against?

̶ How you should be hardening?

̶ Your code doesn’t look so great anymore…

The Problem

6©2019 Check Point Software Technologies Ltd.

• That’s not how design should work.

• Separating “functionality” from “security”.

• Not having a clear policy as to error handling:
̶ When

̶ Where

̶ How

Why does it all go wrong?

7©2019 Check Point Software Technologies Ltd.

• Strategic:

̶ Error handling policy.

̶ Input validation policy.

̶ Exception policy.

̶ Contract policy (wide\narrow).

• Tactical:

̶ API (public\private, memory ownership, and so on).

̶ Maintaining object consistency.

̶ Etc.

How to think about Defensive Programing

8©2019 Check Point Software Technologies Ltd.

• Protect against the client misuse

̶ Nobody reads the manual

̶ Murphy’s input law

̶ Simplicity

• Protect the client

̶ Nobody checks if an operation succeeded

̶ Invariants

̶ Simplicity

Two aspects of Defensive Programming

9©2019 Check Point Software Technologies Ltd.

• Public vs. Private methods

• const

• Passing arguments using & instead of *

• RAII

• Veridic Templates vs. Macros

• Smart Pointers

̶ std::unique_ptr

̶ std::shared_ptr

̶ std::function

• noexcept

• static_assert

(Some of) What C++ can do for us

©2019 Check Point Software Technologies Ltd.

CASE STUDY 1

11©2019 Check Point Software Technologies Ltd.

• C++11 Library for serialization

̶ https://uscilab.github.io/cereal/

• Supports many formats

̶ Binary

̶ XML

̶ JSON

• Throws exceptions on errors

Cereal

https://uscilab.github.io/cereal/

12©2019 Check Point Software Technologies Ltd.

• We want to read a field of a JSON input

̶ It is legitimate for the field not to be present in the JSON

• If the field isn’t in the JSON, cereal will throw an exception

• After caching the exception we want to read the next field

• But we can’t…

The problem

13©2019 Check Point Software Technologies Ltd.

struct JSONInputArchive

{

void startNode() {

if(itsNextName) search();

…

}

void search() {

…

if(!found) throw Exception(“Parsing failed”);

itsNextName = nullptr;

}

}

Library code (simplified)

14©2019 Check Point Software Technologies Ltd.

JSONInputArchive::search

JSONInputArchive::Iterator::search

JSONInputArchive::startNode

JSONInputArchive::setNextName

template <class T> JSONInputArchive::loadValue

template <class T> prologue(JSONInputArchive &, NameValuePair<T> const &)

Partial list of functions involved

15©2019 Check Point Software Technologies Ltd.

void

serialize(JSONInputArchive &ar)

{

try {

…

} catch (Exception const &e) {

ar.setNextName(nullptr);

…

}

}

The “solution”

16©2019 Check Point Software Technologies Ltd.

• An ounce of prevention is worth a pound of cure

Insights

17©2019 Check Point Software Technologies Ltd.

• Beware of Exceptions and object consistency

• Exceptions are not a replacement for error handling policy

Insights

18©2019 Check Point Software Technologies Ltd.

• Consider using wrappers as a protective layer

Insights

©2019 Check Point Software Technologies Ltd.

CASE STUDY 2

20©2019 Check Point Software Technologies Ltd.

• We received bytes on the wire and we want to parse them into a
structure called Packet

̶ Packet(const char *bytes, uint number_of_bytes);

• However, the parsing may failed

̶ Either due to network problems or malicious attack

• So how do we handle such cases?

̶ Constructors can’t return an error value

The problem

21©2019 Check Point Software Technologies Ltd.

• On error the constructor should set the Packet to indicate that an error
has occurred

• Cons:

̶ People will keep forgetting to check the error status

̶ Anybody who receive a Packet will be suspicious of it

̶ Not clear who should actually handle the error

• Generally, don’t do this

Option 1: Handle the problem internally

22©2019 Check Point Software Technologies Ltd.

• First create the Packet instance, than use another method to initialize
the packet.

• Pros:

̶ It is clear who should address the error

• Cons:

̶ You could have an uninitialized Packet (breaks RAII)

̶ There’s an overhead in cases where the input is known to be valid

̶ It’s easy to ignore the return value from the initialization

Option 2: Use initialization function

23©2019 Check Point Software Technologies Ltd.

• The constructor should throw an exception on error – let someone else
deal with it

• Pros:

̶ All packets are always valid

• Cons:

̶ No clear owner as to who should actually handle the error

̶ People don’t expect constructors to throw

̶ There are some delicate points about throwing from a constructor

Option 3: Throw an exception

24©2019 Check Point Software Technologies Ltd.

• Have a static method that returns either the constructed Packet or an
error

• Pros:

̶ Packets are always valid

̶ Clear owner of issues

• Cons:

̶ Less standard approach

Option 4: Use a factory method

25©2019 Check Point Software Technologies Ltd.

class Packet

{

public:

Packet(const Packet &);

static PacketWrapper genPacket(const char *, unit);

private:

Packet(const char *, unit);

};

Option 4: Use a factory method

26©2019 Check Point Software Technologies Ltd.

auto possible_packet = Packet::genPacket(input.data(), input.size());

if (!possible_packet.ok()) {

// Error handling

}

Packet incoming_packet = possible_packet.unwrap();

Packet outgoing_packet =

Packet::genPacket(output.data(), output.size()).unwrap();

Option 4: Use a factory method

27©2019 Check Point Software Technologies Ltd.

• Prefer API that clearly indicates that a problem is possible, and whose
responsibility it is to handle it.

• Prefer to always keep your object initialized and consistent

Insights

©2019 Check Point Software Technologies Ltd.

CASE STUDY 3

29©2019 Check Point Software Technologies Ltd.

• We want to output an object into a stream (std::cout)

• But the print method of the class may fail

• How do we know the state of the stream if such failure occurs?

The problem

30©2019 Check Point Software Technologies Ltd.

class PrintableObject

{

public:

void print(std::ostream &) const;

};

std::ostream &

operator<<(std::ostream &os, const PrintableObject &obj)

{

obj.print(os);

return os;

}

Code Sample

Throws

31©2019 Check Point Software Technologies Ltd.

class PrintableObject

{

public:

void print(std::ostream &) const;

};

template <typename AnyPrintableObject>

std::ostream &

operator<<(std::ostream &os, const AnyPrintableObject &obj)

{

obj.print(os);

return os;

}

Code Sample

Throws

32©2019 Check Point Software Technologies Ltd.

• Have a well defined behavior for print so that it either succeed or leave
the stream unchanged

• Pros:

̶ clean code

̶ Minimal performance impact

• Cons:

̶ Easier said than done

̶ Put a lot of responsibility on the class developer (relevant especially for templates)

Strict Contracts – Defend internally

33©2019 Check Point Software Technologies Ltd.

std::ostream &

operator<<(std::ostream &os, const PrintableObject &obj)

{

std::stringstream temp_output;

obj.print(temp_output);

os << temp_output.str();

return os;

}

Defend Externally

34©2019 Check Point Software Technologies Ltd.

try {

std::cout << “My first PrintableObject: “ << obj1

<< “, my second PrintableObject: “ << obj2 << std::endl;

} catch (PrintableObjectException &exception)

{

}

But even that doesn’t really solves the problem

35©2019 Check Point Software Technologies Ltd.

• Don’t let the function fail, instead have a default action done

̶ Print to the stream “<<<Error>>>”

• Pros:
̶ For the rest of the system, it looks like nothing happened

• Cons:
̶ Can mask real problems in the code

̶ Can cause problems if another code expect the “real” output

̶ Not clear what the default action should be

Kicking the ball

36©2019 Check Point Software Technologies Ltd.

• Sometimes there are no perfect solutions

• Be wary of APIs that “mustn’t fail”

• Contracts are efficient but hard to enforce

• Safeguards are easy to enforce but inefficient

Insight

37©2019 Check Point Software Technologies Ltd.

• Error Handling should be part of the
design

• Most problems can be avoided by
ensuring object consistency

Summary

38©2019 Check Point Software Technologies Ltd. ©2019 Check Point Software Technologies Ltd.

THANK YOU

