Copy elision

Yossi Moalem

Value Categories

Check Point

SOFTWARE TECHNOLOGIES LTD

 Not something we encounter on our day-day life

— Even as professional programmers

 We may see them in compilation errors
— Ivalue required as left operand of assignment

— invalid initialization of non-const reference of type foo&' from an rvalue of type
foo’

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 3

Check Point

SOFTWARE TECHNOLOGIES LTD

Value Category:

» Categories of expressions, not values
e Introduces in CPL, adopted in C, and then in C++
e Refined in C++11

e And again, in C++17

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 4

Check Point

SOFTWARE TECHNOLOGIES LTD

Lvalues and Rvalues

e Originally, Lvalue was on the left side on assignment, while Rvalue on the
right

— Lvalue = Rvalue

 This is inaccurate:
— Lvalue may appear on both side
— Certain Lvalues may not appear on left side

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Lvalues and Rvalues, C++ 03

Classify based on identity
 Lvalue has identity

e Rvalue, does not have identity

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

baz (foo);

baz (foo + foo);

Has a name
Lvalue

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Temporary,
Does not have a name
Rvalue

Check Point

SOFTWARE TECHNOLOGIES LTD

What are the value categories

struct Foo {
int baz() {
return this->_baz;

struct Foo {
int& baz() {

return this->_baz;

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 8

Check Point

SOFTWARE TECHNOLOGIES LTD

BTW, lets have a look at the last example

struct Foo {

int& baz() {

return this->_ baz;

« We return Lvalue, this means we can write:
Foo.baz() = 3;

— Yes, we all write such code. When???

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 9

Check Point

SOFTWARE TECHNOLOGIES LTD

Remind me again

©2019 Check Point Software Technologies Ltd. 10

Pre C++ 11

e Understand remote language features
e Read the standard

e Understand compiler errors

e Impress all your friend

e Be the center of every party

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

11

Check Point

SOFTWARE TECHNOLOGIES LTD

Starting C++ 11

 This is simply super important

» Base of key features added in C++ 11

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 12

Check Point

SOFTWARE TECHNOLOGIES LTD

So, lets start with C++ 03!

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 13

Is this legal

std::string foo() {
std::string foo {“Foo”};

return foo;

void bar() {
const std::string & strRef = foo();

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

Yes it is legal!

Binding const reference on the stack to temporary — lengthens
the temporary lifetime to that of the reference

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 15

Is this still legal??
std::string foo() {

std::string Foo {“Foo”};

return foo;

void bar() {
std::string & strRef = foo();

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

Not any more

e invalid initialization of non-const reference of type ‘..." from an rvalue of
type ...

 And now we know what exactly this this message means...

— Note: some compilers may allow this. The standard does not forbid this.

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 17

Check Point

SOFTWARE TECHNOLOGIES LTD

)

But why?
void foo (double & d){ d++; }

int bar (){
int intValue = 3;
//foo(intValue);

foo would have been called
with temporary

intValue would not have been
incremented.

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 18

Check Point

SOFTWARE TECHNOLOGIES LTD

Binding to Member

struct Answer {
Answer (const string & value) : value(value)

U

const string & value;

5

void h2g2 () {
Answer answer (“forty two”);
cout <<“The answer is “ << answer._value;

}

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

Binding to Member, Cont’d

e Lifetime extension only takes place when binding to const reference on
the stack

e Note: there is no warning here!

e To make things more interesting, this is correct:

cout <<“The answer is “ <<Answer(string(“forty two”))._value;

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

20

Binding to Member #2

struct Socket{ int main(){
Socket(){cout <<“Opening Socket\n";} Bar b(Socket{}):
~ Socket() { cout<<“Closing Socket \n"; }

5

cout << "Main finishes\n";

struct Bar {

const Socket& socket;
Bar(const Socket & socket) :
_socket(socket)

{ cout << "Holding Socket\n"; }
~Bar() { cout << “Releasing Socket" ;

5

©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

Binding to Member, Cont’d

e This will output:
Creating Socket
Holding Socket
Closing socket <- Bar is now holding a dangling reference
Main finishes

Releasing Socket

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 22

Which destructor is called?

struct Base{
~Base() { cout << "Base"; }// no virtual

5

struct Derived:public Base {
~Derived() {cout << "Derived"; }

5

Derived f(){ return Derived(); };

int main(){
const Base& b = f();

}

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

Check Point

SOFTWARE TECHNOLOGIES LTD

Give me the good stuff

©2019 Check Point Software Technologies Ltd. 24

Check Point

SOFTWARE TECHNOLOGIES LTD

C++ 11 : Move

Foo foo;

container.push_back(foo);

container.push_back(foo + foo); Temporary

container.push_back(foo); About to expire

When we no longer need the object we want to move it, not to copy

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 25

Check Point

What does “moving it” means

Copy:

Foo Large Object

Foo, copy Large Object, copy

Foo goes out or scope

Large Chiect

Foo, copy Large Object, copy

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 26

Check Point

What does “moving it” means

Move:

Large Object

Foo, copy

Foo goes out or scope

N o | arge Objec

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 27

Check Point

SOFTWARE TECHNOLOGIES LTD

State after move

— Valid

— Maybe (and likely is) inconsistent
— Should be assign-able

— Must not be used

— Must not touch the large object (destruction)

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 28

Object category, C++11

e C++ 03 classed expressions based on identity

e C++ 11 added movability to the classification

Has Identity Does not have
identity

Can be moved from Xvalue

Cannot be moved Lvalue
from

GLvalue

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

PRvalue

Not in C++

<€

Check Point

SOFTWARE TECHNOLOGIES LTD

Rvalue

29

Check Point

SOFTWARE TECHNOLOGIES LTD

GLvalue — Generalized Lvalue
Any expression that has an identity

e Lvalue:
— Cannot be moved from
— Can take address of
— Original Lvalues could not be moved from

» Xvalue (eXpiring value)
— Can be moved from
— Normally, object is going to be expired soon

— std::move casts into Xvalue

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 30

Check Point

SOFTWARE TECHNOLOGIES LTD

PRvalue — Pure Rvalue

e What Rvalue used to be
e Expression without identity

e Normally used to initialize objects
e For example:
— Function call that returns non-reference (void/by value)

— Temporaries
— Literals (1, true, X/, etc.)

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

31

Check Point

SOFTWARE TECHNOLOGIES LTD

Rvalues
» Generalization of the original Rvalue

e PRvalue or Xvalue
e May, or may not have identity

e Can be moved from

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

32

Check Point

SOFTWARE TECHNOLOGIES LTD

The Whole Picture

/ Expression \

GLvalue Rvalue

/ ~ \

Lvalue Xvalue PRvalue

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 33

And, another way to look at it: Check Point

SOFTWARE TECHNOLOGIES LTD

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 34

Check Point

SOFTWARE TECHNOLOGIES LTD

Lets practice

A PRvalue int func() {..} PRvalue
. . Lvalue func();
Bar int & func() {... }
Foo foo; func(); e
f00: Lvalue int && func() { ... }
' | fOO(); Xvalue
std::move(foo); Xvalue
struct Foo { str.uct. oo
void bar() { n
thiS,’ Xvalue }100;
} foo.i Lvalue
y &foo.i PRvalue

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 35

Check Point
Back to move
e Move is allowed only if argument is Rvalue

e C++ 11 introduces the ability to receive Rvalue as argument

— Part of overload resolution

void push(Bar && b) //Will receive Rvalues only. Can move
void push(const Bar & b) //can receive Lvalues and Rvalues. Has to copy

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

36

Check Poin’g

SOFTWARE TECHNOLOGIES LT

A word on overload resolution
e No && : C++ 03 rules

— & :can be called with Lvalue only
— const& : can be called with Lvalues and Rvalues

e Only &&: Move only
— Only Rvalues can be called
— Used in unique pointers, string stream etc.

e && and & or const & : distinguish between Lvalue and Rvalue

— Rvalue version can(and should) move

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 37

Another look

void useFoo (Foo &);

void useFoo (Foo &&);

Foo && getFoo() { }

Foo && foo = getFoo();

useFoo (foo);

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

38

Look closer:

void foo (Bar arg)

arg has name -> lvalue

Of type Bar

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

39

Look closer:

void foo (Bar & arg)

arg has name -> lvalue

Of type Lvalue reference to Bar

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

40

Look closer:

void foo (Bar && arg)

arg has name -> Lvalue

Of type Rvalue reference to Bar

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

41

Back to the example:

void useFoo (Foo & foo);

void useFoo (Foo && foo);

Foo && getFoo() { }
Foo && foo = getFoo();

useFoo (foo);

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

42

Back to the example:

void useFoo (Foo & foo);

void useFoo (Foo && foo);

Foo && getFoo() { }
Foo && foo = getFoo();

useFoo (std::move(foo));

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

43

And a dark corner of C++: Reference Qualifier

void FOO::doBar() & ; //only LValue “this” can bind

void FOO::doBar() && ; //only RValue “this” can bind

Hardly the most usable feature added to C++11...

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 44

Copy Elision

Check Point

SOFTWARE TECHNOLOGIES LTD

Most compiler optimizations — as-if

Copy elision:
— Allowed to elide copy, if original is not going to be used
— Even if copy has side effects
— Allowed to change the observable state of the program

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 46

Check Point
Return Value Optimization

e Eliminate creation of temporary returned by function

e Copy Ctor must still be accessible

— But may not be defined.
e Return type and the target must be of the same type

e Return value must be local variable

— Arguments do not qualify

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 47

RVO, Example

struct Foo { ... };

Foo createFoo() {
Foo f;

return f; //First copy should be here
}

int main() {
Foo f = createFoo(); //Second copy should be here
return O;

}

©2019 Check Point Software Technologies Ltd.

Without RVO Cheoin’f

SOFTWARE TECHNOLOGIES LTD

string foo () {

string f{“lala”}; foo
int i{42};
return f;

bar

void bar () {

string s{foo () };

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 49

RVO: Check Point

SOFTWARE TECHNOLOGIES LTD

string foo () {

string f{“lala”}; foo
int i{42};
return f;

bar

void bar () {

string s{foo () };

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 50

Argument Elision

Temporaries (PRvalues) passed to function by value, can be
elided

void foo(std::string message) {...}

foo(“Wahoo”);

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 51

Without argument Elision Check Point

SOFTWARE TECHNOLOGIES LTD

void foo (string f) { foo
int i{42};
std::cout <<f;

bar

void bar () {

string s{ foo (“lala”) } ;

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 52

Argument Elision Check Point

SOFTWARE TECHNOLOGIES LTD

void foo (string f) { foo
int i{42};
std::cout <<f;

bar

void bar () {

string s{ “lala” };

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 53

Check Point

SOFTWARE TECHNOLOGIES LTD

Throw (starting C++11)

e Non-volatile object

e Automatic

« Not function parameter/catch clause parameter,

» Scope does not extend the innermost try-block (if any),

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 54

Check Point

SOFTWARE TECHNOLOGIES LTD

Catch (starting C++11)

e The same type as the exception object thrown, (ignoring top-level cv-
qgualification)
e Unless:

— Change the observable behavior of the program, other than copy elision

— For example, if the catch clause argument is modified, and the exception object is
re-thrown

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 55

Check Point

SOFTWARE TECHNOLOGIES LTD

Destruction

» Destruction will take place when the latter object would have been
destroyed, had copy not have been elided.

e They should be looked at as two ways to refer to the same object

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 56

Direct/Copy initialization

struct Foo { Direct initialization, calls Foo::Foo(1);
Foo(int) {} —— :
“oelaans: Feed) | Copy initialization
std::cout << — Creates temporary Foo::Foo(2),
"Foo has been copied /n"; } — Copies it to 2
— Similar to :
int main() { Foo f2(Foo::Foo(Foo::Foo(2)))
Foo f1(1); — What is the difference??
Foo f2 = 2; — Compiler may convert this to

direct initialization

}

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 57

Check Point

Return Rvalue, by value
Foo bar (Foo&& foo, ...) {

return foo;

/
e Inside the function, foo is Lvalue

e Compiler is forced to copy it into return value location
e Use: return std::move(foo),
e Fine even if Foo does not have move semantics

e True also for forward reference
— But need std::forward instead of move.

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 58

“This is wonderful, lets put std::move before every return”
Or

» “| cant remember where | should put std::move, lets put it everywhere”

Can this hurt?

Well, sure. Otherwise this slide would have been redundant...

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 59

Check Point

SOFTWARE TECHNOLOGIES LTD

Move on Temporary

Foo makeFoo(){

Foo f;

Qualifies for RVO

No moving and no copy will take place

return f;

Foo makeFoo(){

Foo f;

No longer qualifies to RVO.

— ltis reference
return std::move(f); — Compiler is forced to move/copy

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 60

Count on compiler optimization?

e If conditions for RVO are met, compiler may:
— Elide the copy
— Handled as Rvalue

— Meaning std::move will be implicitly added.

e By-value arguments will be treated the same

— Not qualified for RVO, but will be returned as Rvalue.

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

61

And in C++ 17

Non copy-able types

std::atomic<int> al (42);

std::atomic<int> a2 = 42;

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

63

Check Point

SOFTWARE TECHNOLOGIES LTD

Final action

template<typename F>

struct FinalAction {
FinalAction(F f): clean{ f } {}
~FinalAction() { clean(); }
F clean;

5

void test() {
int* p=new int{7};
auto actl = finally([&]{
delete p;

cout<<"Good bye, cruel world\n";

+;

template<class F>
FinalAction<F> finally(F f) {
return FinalAction<F>(f);

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 64

Check Point

SOFTWARE TECHNOLOGIES LTD

The problem

e Compiler may generate 2 temporaries

— Dtor will be called 3 times!

« We cannot forbid the copy/move ctor

— Even if compiler will not use them — they must exist

 We must take special care while implementing them

— And hope they will never be called!

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 65

Check Poin’§

SOFTWARE TECHNOLOGIES LT

Bind to const reference/rvalue ref
void test() {
int* p=new int{7};
auto && actl = finally([&]{
delete p;

template<typename F>

struct Final_action {
Final _action(F f): clean{ f} {}
~Final_action() { clean(); }
F clean;

5

cout<<"Good bye, cruel world\n";

+;

template<class F>
Final_action<F> finally(F f) {
return {f},

No initialization
Only reference

No temporary.
Only “recipe”

WELCOME TO THE FUTURE OF CYBER SECURITY

©2019 Check Point Software Technologies Ltd. 66

Move

« Still, we have temporaries
e code that must be maintained
e May not be faster than copy

e Weakens class invariants!

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd.

Check Point

SOFTWARE TECHNOLOGIES LTD

67

Check Point

Guaranteed Copy elision

o If return statement is PRvalue of the same type as the
function return type

o If variable initializer is PRvalue of the same type as the
variable type

CV qualification ignored

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 68

Check Point

SOFTWARE TECHNOLOGIES LTD

Guaranteed Copy elision

template<typename F> void test() {

int* p=new int{7};
auto actl = finally([&]{
delete p;

struct Final_action {

Final_action(F f): clean{ f } {}
~Final_action() { clean(); }

F clean;

5

cout<<"Good bye, cruel world\n";

+;

template<class F>
Final_action<F> finally(F f) {
return {f},

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 69

Check Point

SOFTWARE TECHNOLOGIES LTD

There is no temporary

 So nothing to copy/move from

« Copy/Move Ctor’s may not be present/accessible

— No copy/move can/will take place

auto actl = finally(.....);

Is equivalent to

auto actl = FinalAction (...);

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 70

Check Point

SOFTWARE TECHNOLOGIES LTD

Terminology

» “Guaranteed copy elision” is used in the standard
— Butitis not accurate

— It does not guarantees elision

— It eliminates them altogether
e The whole meaning of the expression is changed

— So there is no copy to elide....

 Not an optimization

— Core language change

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 71

Check Point

SOFTWARE TECHNOLOGIES LTD

Better names:

e “Unmaterialized value returning” (cppreference.com)

— PRvalues are returned and used without materializing a temporary

e Deferred PRvalues materialization

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 72

Check Point

SOFTWARE TECHNOLOGIES LTD

Why bother with names...

template<class F>
FinalAction<F> finally(F f) {

return {f}; void test() {
int* p=new int{7};

auto actl = finally([&]{

delete p;
template<class F> cout<<"Good bye, cruel world\n";
FinalAction<F> finally(F f) { });
FinalAction<F> act{f}; :
return act;

/

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 73

Check Point

SOFTWARE TECHNOLOGIES LTD

T

And there is more to it...

i 5 Y S,
T > g

e, -~ T4 R
- e *‘) - %
an

1
~~~~~

Andrzej's C++ blog,

Rvalues redefiled

WELCOME TO THE FUTURE OF CYBER SECURITY
©2019 Check Point Software Technologies Ltd. 74



