
Clang Concepts
and what it requires to get C++20

Saar Raz • 2019

About Concepts
▪ Make C++ Typed Again

▪ Removes duck-typing from C++

▪ “A type system for types”

▪ The Python 3 of C++

▪ 20+ years in the making

The requires Clause
▪ Before
template<typename It>
void sort(It begin, It end) {

// …
}

▪ After
template<typename It> requires Iterator<It>
void sort(It begin, It end) {

// …
}

Abbreviated Templates
▪ Before
template<typename T, typename U>
void foo(T t, U u) {

// …
}

▪ After
void foo(auto t, auto u) {

// …
}

Static Requirements

template<typename T>
concept Large = sizeof(T) > 10;

template<typename T, typename U>
concept FooableWith = requires (T t, U u) {

typename T::foo_type;
{ t.foo(u) } -> typename T::foo_type;
t++;

};

void doFoo(FooableWith<int> auto t) {
t.foo(3);

}

Nicer Errors
▪ Before

std::unordered_map<A, int> m;

Nicer Errors
▪ After

Overloading
template<Iterator It>
void sort(It begin, It end) {

// …
}

template<RandomAccessIterator It>
void sort(It begin, It end) {

// …
}

About me
▪ 24 years old, from Kiryat Atta

▪ Fell in love with C++ ever since I relearned it in 2015

▪ Have been working on the Clang implementation of
Concepts for the past year or so

▪ This is the story of how I got around to doing this

A slippery slope
▪ Started writing a game engine

▪ Involved a lot of generics
▪ Things were getting out of hand

▪ Concepts had an implementation in GCC 6!
▪ Which wasn’t even out back then

▪ Probably still buggy…
▪ Not sure if maintained

▪ Nah, it’ll be fine

A slippery slope
▪ Built GCC 6

▪ Wrote much code with concepts #future
▪ Before:

▪ Which is basically like:

template<typename Message_, typename Source_, typename PasserLocation_, typename ReceiverLocation_,
typename Context_, typename Propagate_>
auto passMessage(Message_ message, Source_ sourceFromPasser, PasserLocation_ passerLocation,

ReceiverLocation_ receiverLocation, Context_ receiverContext,
Propagate_ propagate) {

// …
}

auto passMessage(auto message, auto sourceFromPasser, auto passerLocation, auto receiverLocation,
auto receiverContext, auto propagate) {

// …
}

C++ with strong typing
auto passMessage(auto message, auto sourceFromPasser, auto passerLocation,

auto receiverLocation, auto receiverContext, auto propagate)
{

// …
}

▪ Becomes:

Message auto passMessage(Message auto message, MessageSource auto sourceFromPasser,
Location auto passerLocation, Location auto receiverLocation,
Context auto receiverContext, Callable auto propagate) {

// …
}

▪ 😍

▪ There’s no turning back now!

And they lived happ-
▪ Well it turns out GCC concepts did have bugs

▪ No problem! I can report them!

▪ (And that was the last time I heard of this)

Compile times
▪ As I said before, this involved a bunch of templates.

▪ Compile times started to get out of hand.

▪ Error messages started to get out of hand…

An unindicative error message

▪ So at one point I tried to compile the project

▪ It froze
▪ The whole PC

▪ The kernel
▪ The mouse won’t even move

▪ Maybe a very long error message?
▪ -fmax-errors=1

▪ Still doesn’t work
▪ Output the message to a file?

▪ Still doesn’t work

▪ A problem with cygwin?

Oh well it’s probably a Windows problem

▪ Move to a Linux VM

▪ Freezes
▪ The host as well

▪ (In hindsight it was a BIOS problem)
▪ Output the error message to a file

▪ Doesn’t freeze…
▪ We have a file with an error message!!!! 🎉🎊

▪ 1.2GB
▪ (-fmax-errors=1)
▪ What does it say?

How do you read 1.2GB?
▪ Opens in some of the text editors

▪ Only 10 lines of error message!
▪ Each line ~100MB

▪ In instantiation of foo::bar<T, U>::bar() [with T = foo<A, B> [with A = …, B = …], U = …]
▪ In instantiation of foo::bar<T, U>::baz() [with T = foo<A, B> [with A = …, B = …], U = …]
▪ …

▪ Template backtrace
▪ We can limit the backtrace depth, but I needed all of it to

understand what the problem was…
▪ People complain C++ gives unindicative errors, I couldn’t even

read mine…
▪ Let us parse!

How do you parse 1.2GB?

▪ So I started writing a Python script -
▪ In instantiation of foo::bar<T, U>::bar() [with T = <1>, U = <2>]
▪ Click 1 to expand <1>, 2 to expand <2>

▪ Doesn’t work
▪ Python is too slow…
▪ C++ to the rescue!

▪ Works!
▪ (I had to really optimize the C++ script)

▪ Got the bug!!!
▪ A few days later, the PC freezes again
▪ 2.0GB

▪ Script can’t handle this anymore

What now?
▪ The long-named templates are actually compile-time trees:

▪ tree<a,tree<c,tree<a>, tree<a>>, tree<a>, tree<c, tree>>

▪ How can we shorten their names?
struct my_tree : tree<a,tree<c,tree<a>, tree<a>>, tree<a>, tree<c, tree>>
{

// inherit constructors
using tree<a,tree<c,tree<a>, tree<a>>, tree<a>, tree<c, tree>>::tree;

};

▪ my_tree behaves just like tree<a,tree<c,tree<a>, tree<a>>, tree<a>,

tree<c, tree>> , except the fact that it’s name is shorter in
error messages!
▪ Works! Only 400MB of error!

▪ Piece of cake for the script

A long-term solution
▪ Inheriting from every long template like this is a hassle

▪ And sometimes I don’t even need all that information

▪ If we take a look at the error message:
▪ In instantiation of foo::bar<T, U>::bar() [with T = <1>, U = <2>]

Another unindicative error message

And accusations of murder

If I’m already patching GCC…

▪ I needed to debug a lot of compile-time stuff

▪ There is no print-debugging at compile time 😢

▪ Let’s add some!

▪ Opened up GCC sources

Good thing GCC’s code is so nice

▪ Meet parser.c, which parses all of C++:

▪ Yes, there are bigger files (52k lines)

static_print

▪ I wanted to add a new keyword to C++:

int main() {
test<int, 3> y;
static_print("y's type is ", decltype(y));
return 0;

}

▪ While compiling the above code, the compiler will print:
▪ y’s type is test<int, 3>

How do you add a keyword?

▪ Well I did take a compilers class back in university…

▪ There’s probably a nice little file that defines the grammar
declaratively
▪ I only need to add my new keyword and I’m done, right??

▪ The real world isn’t as pretty

▪ It’s functions all the way down

▪ What now?
▪ Copy & Paste!

Copy & Paste
▪ static_print behaves awfully similar to static_assert

▪ Can appear in the same places
▪ It also parses string literals
▪ It also starts with static_ and is also colored pink in the slides

▪ The plan:
▪ Search the whole source for the string “static_assert”

▪ Find where keyword is parsed
▪ Wherever it is, duplicate it and change to “static_print”
▪ If that string is assigned to any variables/constants – do the

same thing recursively

Copy & Paste
▪ Found this:
const struct c_common_resword c_common_reswords[] =
{

{ "_Alignas", RID_ALIGNAS, D_CONLY },
{ "_Alignof", RID_ALIGNOF, D_CONLY },

// a bunch more like these...

{ "static_assert", RID_STATIC_ASSERT, D_CXXONLY | D_CXX11 | D_CXXWARN },

// ...

▪ Jackpot! Add this:
{ "static_print", RID_STATIC_PRINT, D_CXXONLY | D_CXX11 | D_CXXWARN },

▪ But now we have RID_STATIC_PRINT

More Copy & Paste
▪ Then
enum rid{
RID_STATIC = 0,
// ...
RID_NULLPTR, RID_STATIC_ASSERT,
RID_STATIC_PRINT,
// ...

};

▪ Search for usage of RID_STATIC_ASSERT

/* If the next token is `static_assert' we have a static assertion. */
else if (token1->keyword == RID_STATIC_ASSERT)

cp_parser_static_assert (parser, /*member_p=*/false);
⇓

/* If the next token is `static_print' we have a static print statement. */
else if (token1->keyword == RID_STATIC_PRINT)

cp_parser_static_print (parser, /*member_p=*/false);

The business logic
static void

cp_parser_static_assert(cp_parser *parser, bool member_p)
{
tree condition;
tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the `static_assert' token so we can keep track of exactly
where the static assertion started. */

token = cp_lexer_peek_token (parser->lexer);
saved_loc = token->location;

/* Look for the `static_assert' keyword. */
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,

RT_STATIC_ASSERT))
return;

/* We know we are in a static assertion; commit to any tentative
parse. */

if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the `(' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */

condition =
cp_parser_constant_expression (parser,

/*allow_non_constant_p=*/true,
/*non_constant_p=*/&dummy);

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
{
if (cxx_dialect < cxx1z)
pedwarn (input_location, OPT_Wpedantic,

"static_assert without a message "
"only available with -std=c++1z or -std=gnu++1z");

/* Eat the ')' */
cp_lexer_consume_token (parser->lexer);
message = build_string (1, "");
TREE_TYPE (message) = char_array_type_node;
fix_string_type (message);

}
else
{
/* Parse the separating `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);

/* Parse the string-literal message. */
message = cp_parser_string_literal (parser,

/*translate=*/false,
/*wide_ok=*/true);

/* A `)' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,

/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

}

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */

finish_static_assert (condition, message, saved_loc, member_p);
}

The business logic
static void
cp_parser_static_assert(cp_parser *parser, bool member_p)
{
tree condition;
tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the `static_assert' token so we can keep track of exactly
where the static assertion started. */

token = cp_lexer_peek_token (parser->lexer);
saved_loc = token->location;

/* Look for the `static_assert' keyword. */
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,

RT_STATIC_ASSERT))
return;

/* We know we are in a static assertion; commit to any tentative
parse. */

if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the `(' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */

condition =
cp_parser_constant_expression (parser,

/*allow_non_constant_p=*/true,
/*non_constant_p=*/&dummy);

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
{
if (cxx_dialect < cxx1z)
pedwarn (input_location, OPT_Wpedantic,

"static_assert without a message "
"only available with -std=c++1z or -std=gnu++1z");

/* Eat the ')' */
cp_lexer_consume_token (parser->lexer);
message = build_string (1, "");
TREE_TYPE (message) = char_array_type_node;
fix_string_type (message);

}
else
{
/* Parse the separating `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);

/* Parse the string-literal message. */
message = cp_parser_string_literal (parser,

/*translate=*/false,
/*wide_ok=*/true);

/* A `)' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,

/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

}

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */

finish_static_assert (condition, message, saved_loc, member_p);
}

The business logic
static void
cp_parser_static_assert(cp_parser *parser, bool member_p)
{
tree condition;
tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the `static_assert' token so we can keep track of exactly
where the static assertion started. */

token = cp_lexer_peek_token (parser->lexer);
saved_loc = token->location;

/* Look for the `static_assert' keyword. */
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,

RT_STATIC_ASSERT))
return;

/* We know we are in a static assertion; commit to any tentative
parse. */

if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the `(' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */

condition =
cp_parser_constant_expression (parser,

/*allow_non_constant_p=*/true,
/*non_constant_p=*/&dummy);

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
{
if (cxx_dialect < cxx1z)
pedwarn (input_location, OPT_Wpedantic,

"static_assert without a message "
"only available with -std=c++1z or -std=gnu++1z");

/* Eat the ')' */
cp_lexer_consume_token (parser->lexer);
message = build_string (1, "");
TREE_TYPE (message) = char_array_type_node;
fix_string_type (message);

}
else
{
/* Parse the separating `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);

/* Parse the string-literal message. */
message = cp_parser_string_literal (parser,

/*translate=*/false,
/*wide_ok=*/true);

/* A `)' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,

/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

}

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */

finish_static_assert (condition, message, saved_loc, member_p);
}

Amazing!

The business logic
static void
cp_parser_static_assert(cp_parser *parser, bool member_p)
{
tree condition;
tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the `static_assert' token so we can keep track of exactly
where the static assertion started. */

token = cp_lexer_peek_token (parser->lexer);
saved_loc = token->location;

/* Look for the `static_assert' keyword. */
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,

RT_STATIC_ASSERT))
return;

/* We know we are in a static assertion; commit to any tentative
parse. */

if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the `(' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */

condition =
cp_parser_constant_expression (parser,

/*allow_non_constant_p=*/true,
/*non_constant_p=*/&dummy);

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
{
if (cxx_dialect < cxx1z)
pedwarn (input_location, OPT_Wpedantic,

"static_assert without a message "
"only available with -std=c++1z or -std=gnu++1z");

/* Eat the ')' */
cp_lexer_consume_token (parser->lexer);
message = build_string (1, "");
TREE_TYPE (message) = char_array_type_node;
fix_string_type (message);

}
else
{
/* Parse the separating `,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);

/* Parse the string-literal message. */
message = cp_parser_string_literal (parser,

/*translate=*/false,
/*wide_ok=*/true);

/* A `)' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,

/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

}

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */

finish_static_assert (condition, message, saved_loc, member_p);
}

Mmm.. A constant
expression is not enough

Parsing the static_print arguments

▪ I wanted static_print to accept any compile time thing, not
only expressions
▪ Types, template names

▪ How in the world am I going to parse this?
▪ Ideas?

▪ Template arguments!
▪ cp_parser_template_argument!

It works!
▪ Compiled the first program using static_print!

▪ But then, a bug:
▪ This doesn’t work:
▪ static_print(“Check this out: ”, sizeof(T) > 3);

▪ Ideas why?
▪ I used cp_parser_template_argument, which knows it is inside a

template argument list
▪ When it sees the ‘>’, it terminates the argument!
▪ Lesson learned:

▪ Copy & Pasting may break some hidden code assumptions
▪ Make sure to scan the code you use for those assumptions

Hurray!
▪ Now it really works!

▪ I can print-debug my own code at compile time!

▪ Maybe others will like to use this as well?
▪ 4 options:

1. Just use this for myself
▪ (no work)

2. Publish the .patch file
▪ (a day’s work)

3. Try getting this merged this into GCC
▪ (a month’s work? Might not be accepted)

4. Propose this to the standard
▪ (two years work? There’s already some proposal in circulation)

▪ Went with #2

Hello, world!

A bug?! Impossible!

Bootstrapping
▪ A new version of GCC comes out, with new optimizations

▪ Compile it – and get a compiler that builds faster code
▪ But the compiler itself was compiled with a worse compiler

▪ Compile again – and get a fast compiler that builds fast code
▪ “Stage 2”
▪ But maybe the optimizations broke something?

▪ Compile again – and check you got the same result as in
stage 2
▪ “Stage 3”

▪ TL;DR – Compilers compiler compilers compile compile
compilers

So what was the issue?
▪ How did compilation fail on stage 1 succeed but stage 2

failed?

▪ Ideas?
▪ We added a new keyword
▪ In stage one we used a compiler without this keyword
▪ I had a local variable named static_print
▪ In stage 2, static_print is a keyword and using it as a variable

name is a syntax error!
▪ Changed the variable name – solved 👌👌

What now?
▪ Given static_print, I could “profile” my long compilation

times
static_print(“Before big template”);

funcThatInstantiatesHugeTemplates();

static_print(“After big template”);

▪ (clang has a template profiler…)

▪ It’s still too slow
▪ GCC also had a page on their website saying they know the

compiler is too slow and they need to take care of that
▪ Some say Clang is faster…

4 options (Reprise)
1. Drop the project

▪ (no work)

2. Stop using concepts
▪ (a week’s work + a lifetime of regret)

3. Optimize GCC
▪ (no)

4. Implement Concepts in Clang myself
▪ (a month or two maybe?)

▪ Went with the last one

Concepts in Clang
▪ Someone’s probably done it already, right?

▪ LMGTFY

▪ 🤔

Concepts in Clang

Concepts in Clang

Concepts in Clang
▪ Turns out clang even had a -fconcepts-ts flag!

▪ But it seemed to just parse some requires-clauses and ignore
them…

▪ Anyway, it seems no substantial work had been done at the
time

Getting It Merged
▪ I’m not a compiler engineer

▪ Why would the clang gods even let me work on their
compiler?

▪ The plan:
▪ Implement the whole feature without asking anyone
▪ Show up at clangs door with everything implemented and then

they’ll accept me!

How Hard Could It Be?
▪ It’s just a bunch of error messages, right?

Implementing a C++ feature

▪ Where do you even start?

P0734R0
▪ Changes to the standard are “diffs” to the standard text

▪ The concepts diff is 36 pages long
▪ (to put things in perspective, the standard is 1400 pages)

Here goes nothing
▪ Well let’s start slowly

▪ We’ll add the notion of a “concept” declaration

▪ Seems simple enough
▪ “concept” + name + “=“ + “constraint-expression”

How do you add concept?

▪ Using the only tool in my arsenal right now
▪ Copy & Paste!

▪ Search the entire sources for a file named Template
something
▪ TemplateDecl.h!
▪ Contains a class named TemplateDecl!
▪ A bunch of other classes inherit from it or from

RedeclarableTemplateDecl…
▪ But it doesn’t seem that the syntax allows to redeclare a template

(only to declare and define it at the same time)
▪ Let’s inherit from TemplateDecl!

What now?
▪ Pick something roughly similar to a concept, search all files for

it and add concepts!
▪ Ideas?

▪ VarTemplateDecl!

template<typename T>
constexpr bool Large = sizeof(T) > 10;

▪ Oh boy

I do this for a while…
▪ I had to go through all manner of weird stuff

▪ ASTDumper
▪ ASTReader
▪ ASTWriter
▪ …
▪ Mentions of “VarTemplate” in non-code files
▪ A bunch of switch-cases

▪ Compiles!

Where does this get parsed?

▪ Following VarTemplateDecl turned out to be a bit
complicated
▪ Let’s just follow the template keyword!

▪ Close enough!

▪ This looks promising!

How parsing works(?)

Down the line…
▪ Jackpot!

▪ I’m just gonna leave this here…

Works!
▪ Concept is parsed!

▪ But wait! There’s a bug

▪ The following code compiles:

constexpr bool A = true;

template<typename T>

concept C = B;

▪ Huh?

▪ Spot the bug:

Typos
▪ It turns out when you use ParseExpression, it might

encounter a non-existent identifier

▪ Which it will treat as a typo!

▪ So here, it recognized the “typo”, and returned the expression
“A”

▪ I should’ve known (somehow) to call
CorrectDelayedTyposOnExpr

▪ Which will issue error messages for all typos and still return
“A”…

The Unwritten Rule(s)
▪ The codebase is full of unwritten rules

▪ Things you (probably) have no way of knowing about until
you don’t use them and debug the consequences
▪ Stack objects (instantiation)
▪ Layering (Parse → Act → Create → Constructor)
▪ …

▪ Which is why Copy & Paste really is a good strategy
▪ Find place in code that does something like what you want
▪ Notice any unfamiliar patterns used there

Show Must Go On
▪ The typo example is a common example of the general

mindset you have to have when developing for a compiler

▪ No quit-outs!
▪ If the user made a mistake, fire an error message, guess what

they actually meant and continue compiling as if that’s what
happened

Defend the User!
▪ Which is correct?

template<typename T>

auto foo(T a) -> void

template<typename T>

auto foo(T a) requires Large<T> -> void

template<typename T>

auto foo(T a) -> void requires Large<T>

▪ But users are still gonna get confused
▪ In practice, I try to parse both ways and accept both forms

▪ Issuing an error message if the wrong one is used
▪ But code behaves the same both ways

▪ As the compiler you need to defend the users from the harsh
standard
▪ Expect the unexpected

Another Bug

The Fine Print
▪ Every word used in the standard is used for a reason

▪ Cutting corners almost never works

The Same Expression
template<typename T>

void foo() requires sizeof(T) > 1;

template<typename T>

void foo() requires sizeof(T) > 1 && sizeof(T) >= 2;

foo<short>();

▪ This should work right?

▪ Well, no:

▪ The same expression – not the same expression!
▪ Italics expression == the grammar rule expression

▪ In practice, I try both ways and give an error message
explaining the difference

Anyway,
▪ I continue copying and pasting my way around the feature

▪ For example, how would you find the place to check whether
the constraints are satisfied?
▪ Ideas?

▪ Search for the error message produced when a wrong no. of
template arguments is given -> leads you to the function that
checks template arguments for a given template

▪ I finish most of the feature in about a month’s work

▪ What now?

Aw, Snap!
▪ I have most of the thing implemented already (or at least,

that’s what I thought at the time)

▪ Was about to show up with the ready to merge patch to the
clang community

▪ Then I saw this:

▪ A friend also warned me that getting stuff merged to LLVM is
really hard

Plan B
▪ Instead of coming in with a patch ready to merge,

▪ Break what I did into commit-size “steps” of how I “would”
“theoretically” implement concepts in clang

▪ Show up with the plan instead!

The Moment of Truth
▪ The most stressful email I’ve ever sent

Great
Success!

Well That Escalated Quickly

▪ I was preaching to the choir

▪ They wanted to do concepts and just needed somebody to do
it!

Whoops!

Working in the Real World

▪ LLVM and Clang use SVN (why???)
▪ But there’s a Git mirror 💪

▪ I had my own Git repository which I work against
▪ A branch for every step of the roadmap

▪ Upload diffs to Phabricator (the CR system used by LLVM)
▪ Nag people until they CR

▪ Work on a Linux VM
▪ Building the compiler in Debug mode takes 30GB and an hour

to link the main executable (compared to 4 seconds for release)
▪ Or 4 minutes on an SSD 😅
▪ Let’s get to work!

4
MONTHS
LATER

Why Small Commits are Good

▪ Well turns out implementing (and testing) this properly
takes longer than

▪ After 4 months, I reached the same point I had before I sent
that email
▪ But properly this time

▪ A few people on reddit suggested that I get a version of that
up on Compiler Explorer…

Then Others Learned the Trick As Well…

Let the world know!

▪ See the bug?

▪ How about now?

Almost done!
▪ All I had left were requires expressions

▪ e.g.

requires (T t) {

typename T::foo_result;

{ t.foo(); } -> typename T::foo_result;

t++;

requires T::is_ok;

}

▪ Seems easy enough

ONE
ETERNITY

LATER

Yeah it wasn’t so easy
▪ Probably one of the most complicated expressions in the

language

▪ But it has been parsed!

▪ The compiler is now feature complete!

Bugs bugs bugs
▪ Ever since then I’ve been fixing bugs reported by the

(incredible) concepts community!
▪ Mostly on the C++ Slack space

▪ And then, in November…

Current Status
▪ No new bugs have surfaced in a while (after fixing over 40!)

▪ Working towards merging this into trunk

Lessons Learned
▪ Hacking on compilers is fun!

▪ Anyone with a Ctrl key can do it

▪ Be naïve at first, learn from your mistakes (and from CR)

▪ Search really hard for developers’ manuals!

▪ Everything in the standard is there for a reason

▪ Take control of your compiler!

▪ The fastest way to get C++20

Questions?
requires Answerable<Q>

