0

Clang Concepts

and what it requires to get C++20

Saar Raz * 2019

About Concepts

= Make C++ Typed Again

= Removes duck-typing from C++
= “A type system for types”

= The Python 3 of C++

= 20+ years in the making

The requires Clause s

= Before

template<typename It>

void sort(It begin, It end) {
/] ..

¥

= After
template<typename It> requires <It>
void sort(It begin, It end) {

/] .
¥

Abbreviated Templates s

= Before
template<typename T, typename U>
void foo(T t, U u) {
/] ..
¥

= After
void foo(auto t, auto u) {

/] .
¥

Static Requirements s

template<typename T>
concept = sizeof(T) > 10;

template<typename T, typename U>

concept = requires (T t, U u) {
typename T::foo_type;
{ t.foo(u) } -> typename T::foo type;

t++;

}s

void doFoo(<int> auto t) {
t.foo(3);

¥

Nicer Errors

= Before

std: :unordered _map<A, int> m;

22 | std: :unordered_map<A, int> m;
#1 with x86-64 clang (experimental concepts) X [=]
A~ Owrap lines
In file included from <source>:2:
In file included from /opt/compiler-explorer/clang-concepts-trunk-20190218/bin/../include/c++/v1/unordered_map:407:

| /opt/compiler-explorer/clang-concepts-trunk-2019€218/bin/../include/c++/v1l/__hash_table:867:5: error: static_assert failed due to requirement '__check_hash_requirements<A, hash<A> >::value' "the specified hash does not meet the H:

static_assert(__check_hash_requirements<_Key, _Hash>::value,

a

/opt/compiler-explorer/clang-concepts-trunk-2@190218/bin/. ./include/c++/vl/__hash_table:882:1: note: in instantiation of template class 'std::__1::__enforce_unordered_container_requirements<A, std::__1::hash<A>, std::__1::equal_t¢

typename _ enforce_unordered_container_requirements<_Key, Hash, _Equal>::type

N

/opt/compiler-explorer/clang-concepts-trunk-2@190218/bin/../include/c++/v1/unordered_map:855:26: note: while substituting explicitly-specified template arguments into function template '_ diagnose_unordered_container_requirements'

static_assert(sizeof(_ diagnose_unordered container requirements<_Key, _Hash, _Pred>(@)), "");
A

<source>:22:32: note: in instantiation of template class 'std:: 1::unordered map<A, int, std:: 1::hash<A>, std::_1::equal to<A>, std:: 1::allocator<std:: 1::pair<const A, int> > »' requested here

std::unordered_map<A, int> m;

~
In file included from <source>:2:
/opt/compiler-explorer/clang-concepts-trunk-20190218/bin/../include/c++/vl/unordered_map:431:11: error: call to implicitly-deleted default constructor of 'std::__1::hash<A>"
: _Hash() {}
A

/opt/compiler-explorer/clang-concepts-trunk-2@190218/bin/. ./include/c++/vl/memory:2178:39: note: in instantiation of member function 'std::__1::__unordered_map_hasher<A, std::__1::__hash_value_type<A, int>, std::__1::hash<A>, true
_LIBCPP_INLINE VISIBILITY constexpr _ compressed_pair_elem() = default;

A

/opt/compiler-explorer/clang-concepts-trunk-2@190218/bin/../include/c++/v1/unordered_map:9@3:5: note: in instantiation of member function 'std:: :__hash_table<std::_1:: hash_value_type<A, int>, std::__1:: unordered_map_hashe

unordered_map()

A

<source>:22:32: note: in instantiation of member function 'std::_ 1::unordered_map<A, int, std:: 1::hash<A>, std::_1::equal_to<A>, std::_1::allocator<std::_ 1::pair<const A, int> > >::unordered map' requested here

std::unordered_map<A, int> m;
~
/opt/compiler-explorer/clang-concepts-trunk-2019@218/bin/../include/c++/v1l/utility:1575:36: note: default constructor of 'hash<A>' is implicitly deleted because base class '__enum_hash<A>' has a deleted default constructor
struct _LIBCPP_TEMPLATE_VIS hash : public _ enum_hash<_Tp>
A
Jopt/compiler-explorer/clang-concepts-trunk-20198218/bin/. ./include/c++/v1/utility:1569:5: note: '_ enum_hash' has been explicitly marked deleted here
__enum_hash() = delete;

a

2 errors generated.

Nicer Errors

= After

22 std: :unordered map<A, int> m; ol |
= —
#1 with x86-64 clang (experimental concepts) X O .

A~ [OWrap lines

<source>:22:10: error: constraints not satisfied for class template 'unordered_map®' [with K = A, V = int]
std: :unordered_map<A, int> m;

Y

s e

<source>:10:14: note: because 'A' is not 'Hashable’
template<Hashable K, typename V>
N
<source>:8:43: note: because 'std::hash<T>({})(t)' would be invalid: type 'std::hash<A>' does not provide a call operator
concept Hashable = requires (T t) { { std::hash<T>{}(t) } -> std::size_t; };
1 error generated.
Compiler returned: 1

Overloading

template< It>

void sort(It begin, It end) {
/] ..

}

template< It>
void sort(It begin, It end) {

/] ..
}

About me s

= 24 vyears old, from Kiryat Atta
= Fell in love with C++ ever since I relearned it in 2015

= Have been working on the Clang implementation of
Concepts for the past year or so

= This is the story of how I got around to doing this

A slippery slope

= Started writing a game engine
= Involved a lot of generics
= Things were getting out of hand

= Concepts had an implementation in GCC 6!

= Which wasn’t even out back then
= Probably still buggy...

Not sure if maintained
Nabh, it'll be fine

A slippery slope

= Built GCC6

= Wrote much code with concepts #future
= Before:

template<typename Message , typename Source_, typename PasserlLocation_, typename ReceiverLocation_,
typename Context_, typename Propagate_ >
auto passMessage(Message message, Source_ sourceFromPasser, PasserLocation_ passerLocation,
ReceiverlLocation_ receiverLocation, Context_ receiverContext,
Propagate_ propagate) {
/] ..

= Which 1s basically like:

auto passMessage(auto message, auto sourceFromPasser, auto passerLocation, auto receiverlLocation,
auto receiverContext, auto propagate) {
/] ..

C++ with strong typing s

auto passMessage(auto message, auto sourceFromPasser, auto passerlLocation,
auto receiverlLocation, auto receiverContext, auto propagate)

{
/] ..
}
= Becomes:
auto passMessage(auto message, auto sourceFromPasser,
auto passerlLocation, auto receiverlLocation,
auto receiverContext, auto propagate) {
/] ..
}

* ©

There's no turning back now!

And they lived happ-

= Well it turns out GCC concepts did have bugs

= No problem!I can report them!

Saar Raz 2017-02-28 16:320:34 UTC Description

The following preogram returns 1 with the latest gcc 7 snapshot:

template<typenames X»
concept bool FalseConcept = false;

template<FalseConcept Y:>
concept bool AnotherConcept = true;

int main{) {
return AnotherConcept<ints;
¥

= (And that was the last time I heard of this)

Compile times s

= AsIsaid before, this involved a bunch of templates.
= Compile times started to get out of hand.

= Error messages started to get out of hand...

An unindicative error message

So at one point I tried to compile the project

It froze

= The whole PC

= The kernel
The mouse won't even move

Maybe a very long error message?
= -fmax-errors=1
= Still doesn't work

= Qutput the message to a file?
= Still doesn't work

A problem with cygwin?

Oh well 1t's probably a Windows problem s

= Move to a Linux VM

= Freezes
= The host as/ilesize propye,,
- (Inhind X
F
- Output the e is tog big to pea Openeg p N
¥ Mot
= Doesn’ e
= Weha)
= 1.2GB

= (-fmax-errors=1)
= What does it say?

How do you read 1.2GB? s

= Opens in some of the text editors

= Only 10 lines of error message!
= Each line ~100MB

In instantiation of foo:bar<T, U>:bar() [with T = foo<A, B> [withA=.,B=.],U=.]
In instantiation of foo:bar<T, U>:baz() [with T = foo<A, B> [with A=..,B=.],U=.]

= Template backtrace

= We can limit the backtrace depth, but I needed all of it to
understand what the problem was...

= People complain C++ gives unindicative errors, [couldn’t even
read mine...

= Letus parse!

How do you parse 1.2GB?

= Solstarted writing a Python script -

In instantiation of foo:bar<T, Us:bar() [with T = <15, U = <25]
Click 1 to expand <1>, 2 to expand <2>

= Doesn’t work
= Python is too slow...

= C++ to the rescuel!
= Works!
= (I had to really optimize the C++ script)
= Got the bug!!!
= A few days later, the PC freezes again

= 2.0GB
= Script can't handle this anymore

What now?

= The long-named templates are actually compile-time trees:
= tree<a,tree<c,tree<a>, tree<a>>, tree<a>, tree<c, tree>>

= How can we shorten their names?

struct my_tree : tree<a,tree<c,tree<a>, tree<a>>, tree<a>, tree<c, tree>>

{

// inherit constructors
using tree<a,tree<c,tree<a>, tree<a>>, tree<a>, tree<c, tree>>::tree;

s
= my tree behaves jUSt like tree<a,tree<c,tree<a>, tree<a>>, tree<a>,
tree<c, tree>>, except the fact that it's name is shorter in
error messages!
= Works! Only 400MB of error!
= Piece of cake for the script

A long-term solution

= Inheriting from every long template like this is a hassle
= And sometimesIdon't even need all that information

= [f we take alook at the error message:

= In instantiation of foo::bar<T, U>::bar() [with T = <1>, U = <2>]
vt

loc_188479D92: loc_188479FF0:
rax, [rsp+ +uar_58] _215pp_tc_whitespaceP16c_pretty printer

Fex,

+typenames], rax _217pp_c_left_bracketP16c_pretty printer

; vec<tree_nodex,va gc,ul embed> = Led rdx, aWith

_215pp_c_whitespaceP16c_pretty_printer rcyE, pp
rcx, pp _2ZN16c_pretty_printeriétranslate_stringEPKc
_217pp_c_left_bracketP16c_pretty printer rcx, pp
rdx, aWith _215pp_c_whitespaceP16c_pretty_printer
rcx, pp template_parms, template_parns
_2H16c_pretty_printerié6translate_stringEPKc] loc_188479F72
rc, pp
_215pp_c_whitespaceP16c_pretty_printer
template_parms, template_parns
loc_10B479F72

loc_10B479F72:
mou rcx, pp
call _218pp_c_right_bracketP16c_pretty printer

template_args
r13
ri4
ris

Another unindicative error message s

required from here
:16: internal compiler error: Segmentation fault

And accusations of murder s

If I'm already patching GCC... s

= Ineeded to debug a lot of compile-time stuff
= There is no print-debugging at compile time
= Let's add some!

= Opened up GCC sources

Good thing GCC's code 1s so nice

= Meet parser.c, which parses all of C++:

|l parserc 3 I

{
error_at (DECL_SOURCE_LOCATION (member decl_opt),
);

DECL_VIRTUAL_P (member_decl_opt) = false;
}

if (member_decl_opt)
member_decl_opt = finish_member_template_decl (member_decl_opt);

end_template_decl ();

parser—fully_implicit_function_template_p = false;
—parser—num_template_parameter_lists;

return member_decl_opt;

length: 1,207,273 lines: 39,199 Ln:39,199 Col:1 Sel:0]0 Unix (LF) UTF-2 INS

C source file

= Yes, there are bigger files (52k lines)

static print s

= [wanted to add a new keyword to C++:

int main() {
test<int, 3> y;

static_print("y's type is ", decltype(y));
return 0;

}

= While compiling the above code, the compiler will print:
= y'stype is test<int, 3>

How do you add a keyword? s

= WellIdid take a compilers class back in university...

= There's probably a nice little file that defines the grammar
declaratively

= JTonly need to add my new keyword and I'm done, right??
= The real world isn't as pretty
= [t's functions all the way down

= What now?
= Copy & Paste!

Copy & Paste s

= static_print behaves awfully similar to static_assert

Can appear in the same places
It also parses string literals
It also starts with static_and is also colored pink in the slides

= The plan:

Search the whole source for the string “static_assert”
= Find where keyword is parsed
Wherever it is, duplicate it and change to “static_print”

If that string is assigned to any variables/constants — do the
same thing recursively

Copy & Paste

= Found this:

const struct c_common_resword c_common_reswords[] =

{
{ "_Alignas", RID_ALIGNAS, D_CONLY },

{ " _Alignof", RID_ALIGNOF, D _CONLY },
// a bunch more like these...

{ "static_assert", RID_STATIC_ASSERT, D_CXXONLY | D_CXX11 | D_CXXWARN },

7 oo

= Jackpot! Add this:

{ "static_print", RID_STATIC_PRINT, D_CXXONLY | D_CXX11 | D_CXXWARN },

= But now we have RID_STATIC_PRINT

More Copy & Paste

= Then

enum rid{

RID STATIC = 0,

/] ...
RID _NULLPTR, RID_STATIC_ASSERT,
RID_STATIC_PRINT,

//
Ji -

= Search for usage of RID_STATIC_ASSERT

/* If the next token is " static _assert' we have a static assertion. */
else if (tokenl->keyword == RID_STATIC_ASSERT)
cp_parser_static_assert (parser, /*member p=*/false);
U
/* If the next token is "“static_print' we have a static print statement. */
else if (tokenl->keyword == RID_STATIC_PRINT)
cp_parser_static_print (parser, /*member_p=*/false);

The business logic

static void

cp_parser_static _assert(cp parser *parser, bool member p)

tree condition;

tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the “static_assert' token so we can keep track of exactly
where the static assertion started. */

token = cp_lexer_peek_token (parser->lexer);

saved_loc = token->location;

/* Look for the “static_assert' keyword. */
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,
RT_STATIC_ASSERT))
return;

/* We know we are in a static assertion; commit to any tentative
parse. */
if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the " (' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */
condition =
cp_parser_constant_expression (parser
/*allow_non_constant_p=*/true,
/*non constant_p=*/&dummy);

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)

if (cxx_dialect < cxx1z)
pedwarn (input_location, OPT_Wpedantic,

"static_assert without a message
"only available with -std=c++1z or -std=gnu++1z");

/* Eat the ')' "*/

cp_lexer_consume_token (parser >lexer);

message = build_string (1, ""

TREE_TYPE (message) = char array type_node;

fix_string_type (message);

}
else

/* Parse the separating °,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);

/* Parse the string-literal message. */

message = cp_parser_string_literal (parser,
/*translate=*/false,
/*wide_ok=*/true);

/* A ")' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

¥

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */
finish_static_assert (condition, message, saved_loc, member_p);

The business logic

static void
cp_parser_static_assert(cp_parser *parser, bool member_p)
{

tree condition;

tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the “static_assert' token so we can keep track of exactly
where the static assertion started. *

token = cp_lexer_peek_token (parser->lexer);

saved_loc = token->location;

/* Look for the “static _assert' keyword. */
if (!cp_parser_require_keyword (parser, RID STATIC_ASSERT,
RT_STATIC_ASSERT))
return;

/* We know we are in a static assertion; commit to any tentative
parse. */
if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the " (' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */
condition =
cp_parser_constant_expression (parser
/*allow_non_constant_p=*/true,
/*non constant_p=*/&dummy);

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)

if (cxx_dialect < cxx1z)
pedwarn (input_location, OPT_Wpedantic,

"static_assert without a message
"only available with -std=c++1z or -std=gnu++1z");

/* Eat the ")' */

cp_lexer_consume_token (pars

message = build_string (1,

TREE_TYPE (message) = char array type_node;

fix_string_type (message);

->lexer);

}
else

/* Parse the separating °,'. */
cp_parser_require (parser, CPP_COMMA, RT_COMMA);

/* Parse the string-literal message. */

message = cp_parser_string_literal (parser,
/*translate=*/false,
/*wide_ok=*/true);

/* A ")' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

¥

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */
finish_static_assert (condition, message, saved_loc, member_p);

The business logic

static void
cp_parser_static_assert(cp_parser *parser, bool member_p)
{

tree condition;

tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the “static_assert' token so we can keep track of exactly
where the static assertion started. *

token = cp_lexer_peek_token (parser->lexer);

saved_loc = token->location;

/* Look for the “static_assert' keyword. */
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,
RT_STATIC_ASSERT))
return;

/* We know we are in a static assertion; commit to any tentative
parse. */
if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the " (' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */
condition =
cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/true,
/*non constant_p=*/&dummy);

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)

if (cxx_dialect < cxx1z)
pedwarn (:mput location, OPT_Wpedantic,
"static_assert without a message
"only available with -std=c++1z or -std=gnu++1z");
/* Eat the ')' "*/
cp_lexer_consume_token (parser >lexer);
message = build_string (1, ""

TREE_TYPE (message) = char_array_type_node; . I
fix_string_type (message); l I aZl I
} .

else

/* Parse the separating ° Y
cp_parser_require (parser, CPP _COMMA, RT_COMMA);

/* Parse the string-literal message. */

message = cp_parser_string literal (parser,
/*translate=*/false,
/*wide_ok=*/true);

/* A ")' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

¥

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
the static assert now or saving it for template instantiation. */
finish_static_assert (condition, message, saved_loc, member_p);

The business logic

static void
cp_parser_static_assert(cp_parser *parser, bool member_p)
{

tree condition;

tree message;
cp_token *token;
location_t saved_loc;
bool dummy;

/* Peek at the “static_assert' token so we can keep track of exactly
where the static assertion started. *

token = cp_lexer_peek_token (parser->lexer);

saved_loc = token->location;

e o e e, Mmm.. A constant

if (!cp_parser_require_| keyword (parser, RID_STATIC_ASSERT,
RT_STATIC_ASSERT))
return;

expression is not enough

/* We know we are in a static assertion; commit to any tentative
parse. */
if (cp_parser_parsing_tentatively (parser))
cp_parser_commit_to_tentative_parse (parser);

/* Parse the " (' starting the static assertion condition. */
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);

/* Parse the constant-expression. Allow a non-constant expression
here in order to give better diagnostics in finish_static_assert. */
condition =
cp_parser_constant_expression (parser,
/*allow non_constant p=*/true,
/*non_constant_p=*/&dummy) ;

if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)

if (cxx_dialect < cxx1z)
pedwarn (:mput location, OPT_Wpedantic,
"static_assert without a message "
"only available with -std=c++1z or -std=gnu++1z");
/* Eat the ')' "*/
cp_lexer_consume_token (parser >lexer);
message = build_string (1, "");
TREE_TYPE (message) = char_array_type_node;
fix_string_type (message);

else

/* Parse the separating ° Y
cp_parser_require (parser, cpp _COMMA, RT_COMMA);

/* Parse the string-literal message. */

message = cp_parser_string_literal (parser,
/*translate=*/false,
/*wide_ok=*/true);

/* A ")' completes the static assertion. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);

¥

/* A semicolon terminates the declaration. */
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);

/* Complete the static assertion, which may mean either processing
. the static assert now or saving it for template instantiation. */

imdel chaddr mccomd frmndidtmam e mmm emvpmAd T AN .

Parsing the static_print arguments s

= Jwanted static_print to accept any compile time thing, not
only expressions

= Types, template names

= How in the world am I going to parse this?

= Jdeas?
= Template arguments!
= cp_parser_template_argument!

It works!

= Compiled the first program using static_print!

= But then, a bug:
= This doesn’t work:
» static print(“Check this out: ”, sizeof(T) > 3);

Ideas why?

Iused cp_parser_template_argument, which knows it is inside a
template argument list

When it sees the >/, it terminates the argument!

Lesson learned:
= Copy & Pasting may break some hidden code assumptions
= Make sure to scan the code you use for those assumptions

Hurray!

= Now it really works!
= Jcan print-debug my own code at compile time!

= Maybe others will like to use this as well?
= 4 options:

1. Just use this for myself
= (no work)

2. Publish the .patch file
= (aday's work)

3. Try getting this merged this into GCC
= (amonth’'s work? Might not be accepted)

4. Propose this to the standard
= (two years work? There’s already some proposal in circulation)

= Went with #2

Hello, world!

4 lonkamikaze 23 points - 1 yearagdo
¥ 1thought this would be an article about a really cool metaprogramming hack. &

Share Report Save Give Award

4 saarrazl Clang Conceptsdev ,® 14 points - 1 yearago
¥ Doesn't hacking the compiler count as metaprogramming? ;)

Share Save Edit =+

4 lonkamikaze 13 points - 1vyearago
+ Nope. Extending the language is cheating.

Share Report Save Give Award

A GCC 7.1 patch that adds a 'static_print' statement to C++. Ec
Add topics
P 12 commits ¥ 1 branch 2> 0 releases 42 2 contributors gs GPL-3.0

Branch: master = MNew pull request Create new file =~ Upload files = Find file Clone or download

A bug?! Impossible!

build fails at stage2
abigagli opened this issue on Jul 4, 2017 - 2 comments

. abigagli commented on Jul 4, 2017 Contributor

On macos 10.12.5, native compiler being clang-4.0, the first stage succeeds and xg++ gets successfully built,

but then compilation fails|during stageZ with the following error:

Bootstrapping s

= A new version of GCC comes out, with new optimizations

= Compile it — and get a compiler that builds faster code
= But the compiler itself was compiled with a worse compiler

= Compile again — and get a fast compiler that builds fast code
= “Stage 2”
= But maybe the optimizations broke something?

= Compile again — and check you got the same result as in
stage 2

= “Stage 3’

= TL;DR — Compilers compiler compilers compile compile
compilers

So what was the 1ssue? s

= How did compilation fail on stage 1 succeed but stage 2
failed?

cp-tree.h:1898:5: error: expected ungualified-id before 'static_print’
static_print;

P A PP P P P

= Jdeas?

We added a new keyword
In stage one we used a compiler without this keyword
I had a local variable named static_print

In stage 2, static_print is a keyword and using it as a variable
name 1s a syntax error!

Changed the variable name — solved ¢§) §)

What now? s

= Given static_print,Icould “profile” my long compilation
times
static _print(“Before big template”);
funcThatInstantiatesHugeTemplates();
static print(“After big template”);

= (clang has a template profiler...)

= Jt's still too slow

= GCC also had a page on their website saying they know the
compiler is too slow and they need to take care of that

= Some say Clang is faster...

4 options (Reprise) s

1. Drop the project
= (no work)

2. Stop using concepts
= (aweek’'s work + a lifetime of regret)

3. Optimize GCC
* (no)

4. Implement Concepts in Clang myself
= (amonth or two maybe?)

= Went with the last one

Concepts in Clang

The C++0x "Remove Concepts” Decision

Post a Comment

Concepts were to have been the central new feature in C++0x

Bjarne Stroustrup designed and implemented the C++ programming language. He can be
contacted here.

At the July 2009 meeting in Frankfurt, Germany, the C++ Standards Committee voted to remove
"concepts” from C++0x. Although this was a big disappointment for those of us who have worked
on concepts for years and are aware of their potential, the removal fortunately will not directly

Figure 4. Parsing associated functions.

Concepts in Clang

Technical specifications and standing documents

ISO C++ also publishes a number of documents describing additional language and library features that are not part of standard C++.

¥ List of features and minimum Clang version with support

Document Latest Compiler flag | Available in Clang?
draft

Clang 3.4 (N3745)
Clang 3.6 (N4200)
Clang 4 (POO96R3)
Clang 5 (POOS6R4)
Clang 7 (POOS6R5)
WIP (P1353R0)

Superseded by
PO734R0

SD-6: SG10 feature test recommendations SD-6 N/A

[TS] Concepts PO121RO

-f ti -t
[DRAFT TS] Coroutines N4663 coroutines-ts Clang 5
-stdlib=libc++

Concepts in Clang

The state of Concepts in Clang

Classic List Threaded

Feb 05, 2017; 3:43pm ™ David Blaikie via cfe-dev The state of Concepts in Clang

Feb 05, 2017; 7:57pm David Blaikie via cfe-dev

The Concepts TS implementation for Clang is occurring on trunk; so you are looking in the right place.
Reaardless of the Imnlementarion srarils in cland. Tthe 1& remains_an exnerimental desian. which mav |

WIP can me anything from "we are running the last tests before release"
to "I have put it on the TODO list".

The background is that we are currently redesigning a large template
library and would really like to make use of concepts. Working with GCC
during development is not a problem, but when we start distributing
first release candidates maybe a year from now, it would be important to
have Clang support, too.

If someone could shed light on the current status and whether there is
an ETA that would help us a lot. Note that I am not implying that anyone
should do anything for us, it's just important for us to know whether

it's something we can likely expect for e.g. clang-6 or "definetely not

in the next two years".

Thank you,

Hannes

pgp-key: https://hannes.hauswedell.net/hannes hauswedell public key.asc
fingerprint: FC35 7547 7916 DA55 DC42 27EA 1D57 8E18 A109 60BF

Concepts 1in Clang s

= Turns out clang even had a -fconcepts-ts flag!
= But it seemed to just parse some requires-clauses and ignore
them...

= Anyway, it seems no substantial work had been done at the
time

Getting It Merged s

= I'm not a compiler engineer

= Why would the clang gods even let me work on their
compiler?

= The plan:
= Implement the whole feature without asking anyone

= Show up at clangs door with everything implemented and then
they'll accept me!

How Hard Could It Be? s

= [t's just a bunch of error messages, right?

Implementing a C++ feature

= Where do you even start?

Technical specifications and standing documents

ISO C++ also publishes a number of documents describing additional language and library features that are not part of standard C++.

¥ List of features and minimum Clang version with support

Document Latest Compiler flag | Available in Clang?
draft

Clang 3.4 (N3745)
Clang 3.6 (N4200)
Clang 4 (POO96R3)
Clang 5 (POOS6R4)
Clang 7 (POOS6R5)

Superseded by
PO734R0

Clang 5

SD-6: SG10 feature test recommendations SD-6 N/A

[TS] Concepts PO121RO

-fcoroutines-ts

[DRAFT TS] Coroutines N4663
-stdlib=libc++

P0734R0

= Changes to the standard are “diffs” to the standard text

6 Basic concepts [basic]

6.1 Basic concepts [gram.basic]
Add concepts to the list of entities.

An entity is a value, object, reference, function, enumerator, type, class member, bit-field. tem-
plate, concept. template specialization, namespace, or parameter pack.

6.2 One-definition rule [basic.def.odr]
Modify paragraph 1.

No translation unit shall contain more than one definition of any variable, function, class type,
enumeration type, er template, or concept.

= The concepts diff is 36 pages long
= (to put things in perspective, the standard is 1400 pages)

Here goes nothing

= Well let's start slowly
= We'll add the notion of a “concept” declaration

A template defines a family of classes, functions, or variables. or a concept, or an alias for a
family of types.

template declaration:

template-hea ’%em—p—l—a—%e—(—ﬁ#w%rm%mﬁv-m—h%— declaration

fH)I 1te- ’t(lrl COTNCEPI —1]: v;,, 4l

fe l/://!’/{f' -head:

te:lplate < template-parameter-list > requires-clause '
/ / 7

e
concept-de finition:

Concept concept-name = constraint-erpression

= Seems simple enough

ll u

= “concept” + name + “=" + “constraint-expression”

// \brief Definition of concept, not just declaration actually.
class ConceptDecl : public TemplateDecl {
protected:

I Expr *ConstraintExpr;

ConceptDecl (DeclContext *DC, SourcelLocation L, DeclarationName Name,
TemplateParameterList *Params, Expr *ConstraintExpr)
: TemplateDecl(Concept, DC, L, Name, Params),
ConstraintExpr(ConstraintExpr) {};
" public:

static ConceptDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName Name,
TemplateParameterList *Params,
Expr *ConstraintExpr);

static ConceptDecl *CreateDeserialized(ASTContext &C, unsigned ID);

Expr *getConstraintExpr() const {
return ConstraintExpr;

}

void setConstraintExpr(Expr *CE) {
ConstraintExpr = CE;

}

// Implement isa/cast/dyncast/etc.

static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Concept; }

friend class ASTReader;
friend class ASTDeclReader;
friend class ASTDeclWriter;

What now?

= Pick somethina rouah imilar to a concep

Find in Path Match case» File mask: | *.td

Q- VarTemplateDecl

In Project| Module Directory Scope

Ve eAV/SiVarTemplateDecl{@hEdVarTemplateDec i BFASYEnIt 1= Heds] s R a®
IS DI A S VarTemplateDecl{@hHdVarTe 1622
DeclResult CheckVarTemplateld (ElREnbEEd “Template Sema.h 6305

= Oh boy

I do this for a while...

= [had to go through all manner of weird stuff

DecINodes.td %
02 aeT uMPLapTureacxpr : vuecL<var>,
63 def NonTypeTemplateParm : DDecl<Declarator>;
64 def Template : DDecl<Named, "templates", 1>;
65 def RedeclarableTemplate : DDecl<Template, "redeclarable templates", 1>;
66 def FunctionTemplate : DDecl<RedeclarableTemplate>;
67 def ClassTemplate : DDecl<RedeclarableTemplate>;
68 def VarTemplate : DDecl<RedeclarableTemplate>;
69 def TypeAliasTemplate : DDecl<RedeclarableTemplate>;
70 def TemplateTemplateParm : DDecl<Template>;
71 def BuiltinTemplate : DDecl<Template>;

72 def Concept : DDecl<Template>;|

40>
406
407
408
409
410
411
412
413
414

Where does this get parsed?

= Following VarTemplateDecl turned out to be a bit
complicated

= Let'sjust follow the template keyword!

ParseTemplate.cpp %
/// \returns true 1T an error occurrea, ralse Ooltnerwlse.
bool Parser::ParseTemplateParameters(
unsigned Depth, SmallVectorImpl<NamedDecl *> &TemplateParams,
SourceLocation &LAnglelLoc, SourceLocation &RAnglelLoc) {
// Get the template parameter list.
if (!TryConsumeToken(tok::less, LAngleLoc)) {
Diag(Tok.getLocation(), diag::err expected less after) << "template";
return true;

}

— . " w . -

= (Close enough!

How parsing works(?)

= This looks promising!

// Consume the 'template', which should be here.

SourcelLocation TemplatelLoc;

if (!TryConsumeToken(tok::kw template, TemplatelLoc)) {
DiaET%ok.getLocation(), diEg::err_expected_template);
return nullptr;

}

// Parse the '<' template-parameter-list '>'

SourceLocation LAngleLoc, RAnglelLoc;

SmallVector<NamedDecl*, 4> TemplateParams;

if (ParseTemplateParameters(CurTemplateDepthTracker.getDepth(),

TemplateParams, LAngleLoc, RAngleLoc)) {

// Skip until the semi-colon or a '}'.
SkipUntil(tok::r brace, StopAtSemi | StopBeforeMatch);
TryConsumeToken(tok: :semi);
return nullptr;

Down the line...

= Jackpot!

// Parse the actual template declaration.

return ParseSingleDeclarationAfterTemplate(Context,
ParsedTemplateInfo(&ParamLists,

isSpecialization,
LastParamListWasEmpty),
ParsingTemplateParams,
DeclEnd, AS, AccessAttrs);

= I'm just gonna leave this here...

if (Tok.is(tok::kw concept)) {
return ParseConceptDefinition(Context, TemplateInfo, DiagsFromTParams,
DeclEnd, AS, AccessAttrs,

prefixAttrs);

[\

Decl *

Parser: :ParseConceptDefinition(unsigned Context,
const ParsedTemplateInfo &TemplateInfo,
ParsingDeclRAIIObject &DiagsFromTParams,
SourceLocation &DeclEnd,
AccessSpecifier AS,
AttributeList *AccessAttrs) {

assert(TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
"Template information required");

assert(Tok.is(tok::kw concept));
ConsumeToken();

if (!Tok.is(tok::identifier)) {
Diag(Tok.getLocation(), diag::err expected) << tok::identifier;
return nullptr;

}

IdentifierInfo *Id = Tok.getIdentifierInfo();
SourcelLocation IdLoc = ConsumeToken();

if (!TryConsumeToken(tok::equal)) {
Diag(Tok.getLocation(), diag::err expected) << "equal";
return nullptr;

b4

ExprResult ConstraintExprResult = ParseExpression();
if (ConstraintExprResult.isInvalid())
return nullptr;

ExpectAndConsumeSemi(diag: :err expected semi declaration);

Expr *ConstraintExpr = ConstraintExprResult.get();

return Actions.ActOnConceptDefinition(getCurScope(),
*TemplateInfo.TemplateParams,
Id, IdLoc, ConstraintExpr);

W

Decl *
Parser::ParseConceptDefinition(unsigned Context,

const ParsedTemplateInfo &Templatelnfo,
ParsingDeclRAIIObject &DiagsFromTParams,
SourcelLocation &DeclEnd,
AccessSpecifier AS,
AttributelList *AccessAttrs) {
assert(TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
"Template information required");

assert(Tok.is(tok::kw concept));
ConsumeToken();

if (!Tok.is(tok::identifier)) {
Diag(Tok.getLocation(), diag::err expected) << tok::identifier;
return nullptr;

}

IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();

if (!TryConsumeToken(tok::equal)) {
Diag(Tok.getLocation(), diag::err expected) << "equal";
return nullptr;

}

ExprResult ConstraintExprResult =
Actions.CorrectDelayedTyposInExpr(ParseExpression());
if (ConstraintExprResult.isInvalid())
return nullptr;

ExpectAndConsumeSemi(diag: :err expected semi declaration);

Expr *ConstraintExpr = ConstraintExprResult.get();

return Actions.ActOnConceptDefinition(getCurScope(),
*TemplateInfo.TemplateParams,
Id, IdLoc, ConstraintExpr);

Typos 0

= [t turns out when you use ParseExpression, it might
encounter a non-existent identifier

= Which i1t will treat as a typo!

= So here, it recognized the “typo”, and returned the expression
llA"

=] should've known (somehow) to call
CorrectDelayedTyposOnExpr

= Which will issue error messages for all typos and still return
"A"___

The Unwritten Rule(s) s

= The codebase is full of unwritten rules

= Things you (probably) have no way of knowing about until
you don't use them and debug the consequences

= Stack objects (instantiation)
= Layering (Parse —» Act - Create —» Constructor)

= Which is why Copy & Paste really is a good strategy
= Find place in code that does something like what you want
= Notice any unfamiliar patterns used there

Show Must Go On s

= The typo example is a common example of the general
mindset you have to have when developing for a compiler

= No quit-outs!

= If the user made a mistake, fire an error message, guess what
they actually meant and continue compiling as if that's what
happened

Defend the User!

= Which is correct?

template<typename T>
auto foo(T a) -> void
)(template<typename T>
auto foo(T a) requires <T> -> void
template<typename T>
J auto foo(T a) -> void requires <T>

= But users are still gonna get confused

= In practice, I try to parse both ways and accept both forms
= Issuing an error message if the wrong one is used
= But code behaves the same both ways

= As the compiler you need to defend the users from the harsh
standard

= Expect the unexpected

An

Decl *
Parser: :ParseConceptDefinition(unsigned Context,

const ParsedTemplateInfo &TemplatelInfo,
ParsingDeclRAIIObject &DiagsFromTParams,
SourceLocation &DeclEnd,
AccessSpecifier AS,
AttributelList *AccessAttrs) {
assert(TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
"Template information required");

assert(Tok.is(tok::kw concept));
ConsumeToken();

if (!Tok.is(tok::identifier)) {
Diag(Tok.getLocation(), diag::err _expected) << tok::identifier;
return nullptr;

}

IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();

if (!TryConsumeToken(tok::equal)) {
Diag(Tok.getLocation(), diag::err expected) << "equal";
return nullptr;

}

ExprResult ConstraintExprResult =
Actions.CorrectDelayedTyposInExpr(ParseExpression());
if (ConstraintExprResult.isInvalid())
return nullptr;

ExpectAndConsumeSemi(diag: :err expected semi declaration);

Expr *ConstraintExpr = ConstraintExprResult.get();

return Actions.ActOnConceptDefinition(getCurScope(),
*TemplateInfo.TemplateParams,
Id, IdLoc, ConstraintExpr);

The Fine Print s

= Every word used in the standard is used for a reason

= Cutting corners almost never works

The Same Expression

template<typename T>

void foo() requires sizeof(T) > 1;

template<typename T>

void foo() requires sizeof(T) > 1 && sizeof(T) >= 2;

foo<short>();

= This should work right?
= Well, no:

entity. called the parameter mapping 37-10.2). 'wo atomic constraints are identical if the

are formed from the same erpression and the tarcets of the parameter mappings are equivalent

= The same expression — not the same expression!
= Ttalics expression == the grammar rule expression

expression:

assignment-expression

expression , assignment-expression

= In practice, I try both ways and give an error message
explaining the difference

Anyway,

= [continue copying and pasting my way around the feature

= For example, how would you find the place to check whether
the constraints are satisfied?

= Jdeas?

= Search for the error message produced when a wrong no. of
template arguments is given -> leads you to the function that
checks template arguments for a given template

= [finish most of the feature in about a month’s work

= What now?

Aw, Snap!

=] have most of the thing implemented already (or at least,
that's what I thought at the time)

= Was about to show up with the ready to merge patch to the
clang community

= Then I saw this:

Incremental Development

In the LLVM project, we do all significant changes as a series of incremental patches. We have a strong dislike for
huge changes or long-term development branches. Long-term development branches have a number of drawbacks:
|

1. Branches must have mainline merged into them periodically. If the branch development and mainline
development occur in the same pieces of code, resolving merge conflicts can take a lot of time.

= A friend also warned me that getting stuff merged to LLVM is
really hard

Plan B

= [nstead of coming in with a patch ready to merge,

= Break what I did into commit-size “steps” of how I “would”
“theoretically” implement concepts in clang

= Show up with the plan instead!

LI saarraz / clang-concepts-roadmap @uUnwatch~ 4 | HeStar | 12 0
<> Code Issues 0 Pull requests o Projects @ Wiki Insights Settings
Roadmap for implementation of Concepts in the Clang compiler. Edit

Manage topics

0 15 commits ¥ 1 branch © 0 releases 21 1 contributor
Branch: master ¥ MNew pull request Create new file Upload files Find file
. saarraz Update README.md Latest commit 2b57892 on Aug 13, 2018
E| README.md Update README.md 6 months ago
README.md Vi

Concepts (P0734R0) Implementation in Clang

Roadmap for implementation of Concepts in the Clang compiler.

Roadmap

The Moment of Truth

= The most stressful email I've ever sent

11/18/17

Mail Deliverv Subsvstem to saar ¢

Richard Smith to Saar, Clang, Hubert 111817

On 17 November 2017 at 16:24, Saar H
Hi all,

p very little code in place right now regarding

I 8l Changyu and Nathan to the CC because

As I've read and seen iR
Concepts, placed by Hul)

Hubert Tong fo Richard
Hi Saar,

As Richard mentioned, thg
they've also been actiyg

WEIIGIT VWO HIVL HITAan GAID UIT Ul UG IAHYUOY T IGAWUIS WU OGO I GLLy

stable already and were agreed upor

| took a look at the relevant code and g as It stands today: https://github.com/saarraz/clang-concepts-
roadmap

| broke it up into commit-sized chunks, which should tak§

of course willing to implement all of this if needed.

Thank you for your analysis and the offer to help out!

We are very much open to adding support for P0734R0 to Clang, along with all other features voted into the working draft for C++20. The only reason this has not already been
implemented is a lack of volunteers such as yourself with the time to devote to the task.

Well That Escalated Quickly s

= [was preaching to the choir

= They wantedalg
it!

needed somebody to do

e Changyu Li to hubert.rel M19M17 ¢
Hi Saar,

I'd like to help you imp] s future, not right now though.

Working in the Real World s

LLVM and Clang use SVN (why???)
= But there’s a Git mirror (5

I had my own Git repository which I work against
= A branch for every step of the roadmap

Upload diffs to Phabricator (the CR system used by LLVM)
= Nag people until they CR

Work on a Linux VM

= Building the compiler in Debug mode takes 30GB and an hour
to link the main executable (compared to 4 seconds for release)

= Or 4 minutes on an SSD &
= Let's get to work!

|

MONTHS
LATER

Why Small Commits are Good

Clang Concepts - COMPILER ‘Add - More * ®© n v :
Saar Ra = EXPLORER 12118 &
e I\'I;work x86-64 clang (experimental concepts) (Editor #1, Compiler #1) C++ X
mme, X86-64 clang (experimental @ Compiler options...
concepts)
Matt Go 1/2/18 &
@ hysae AT 011010 M.LX0: Olibf: M.text M// O\s+ [intel [Demang '
:’;’l‘_’r:f:l 1 foo(): # @foo() ;;ﬁand
explorer 2 push rbp
Cheers, 3 mov rbp, rsp
4 sub rsp, 16
5 lea rdi, [rbp - 8]
6 call S1<int>::f()
7 add rsp, 16
8 pop rbp
9 ret

Then Others Learned the Trick As Well...

=* COMPILER [, .
—s EXPLORER

x86-64 clang (experimental concepts) (Editor #1, Compiler #1) C++ X

More ¥

x86-64 clang (experimental ® Compiler options...
concepts) -
|
riscv32 clang (trunk) - text M/ O\s+ Intel Demangle B Libraries™ = Add new.
@foo()
CLANG X86-64
x86-64 clang (experimental - rsp
Wiifetime) 16
x86-64 clang (experimental [rbp - 8]
P1144) 1ty if()
x86-64 clang (experimental Ls
P1221)
x86-64 clang (experimental
auto NSDMI)

x86-64 clang (experimental
concepts)

x86-64 clang (trunk)

Let the world know!

4 Q r/cpp - Posted by u/saarraz1l Clang Concepts dev 10 months ago
Sun Apr 01 2018 14:08:19 GMT+0300 (Israel Daylight Time) |FEET PRENE =Sy PRS-

2= Cumarimantal Clan

blelbach rust ++ Committee on | C++Now 5 points - months ago
4 NVIDIA | Thrust | HPX | C++ Committee | CppCon | C++N 5 poi 10 hs ag

+ Either way, this is a huge troll.

Share Report Save Give Award

4 BillyONeal MSVCSTLDev 6 points - 10 months ago

¥ Not sure if seriniis ar Anril fanl's
Share R 4 dpsi 2points - 10 months ago

+ I can'ttell either, I keep getting compilation failures.

Share Report Save Give Award

Have fun:)

M 20 Commer

= See the bug?
= How about now?

Almost done!

= All T had left were requires expressions
= eq.
requires (T t) {
typename T::foo result;
{ t.foo(); } -> typename T::foo result;
t++;
requires T::1is_ok;
}

= Seems easy enough

ONE
ETERNITD
LATER

Yeah 1t wasn't so easy

= Probably one of the most complicated expressions in the
language

= But it has been parsed!

= The compiler is now feature complete!

0 r/cpp - Posted by u/saarraz1l Clang Concepts dev 6 months ago
Clang Concepts is now feature-complete!

A few months ago I released the clang concepts build to Compiler Explorer but it was still missing some features (namely
requires expressions).

I'm pleased to announce that today the implementation is feature complete and contains all concepts features present
in the current standard working draft!

Note that the standard does not include a "terse syntax" ("void foo(const Container &s)") yet, nor does the current
implementation.

Check it out on compiler explorer: https://godbolt.org/g/Xthpfw

Building the compiler for yourself is also possible, visit my github repo https://github.com/saarraz/clang-concepts for
instructions.

Please do play around with this and report any bugs you find (open an issue on the github repo)! Any other feedback
regarding the feature will also be greatly appreciated. This will greatly help get this merged sooner.

There's still work to do before this is merged to trunk, namely getting some more CR, finding more bugs, and solving
some issues which aren't clear standard-wise.

M 47 Comments # Share # Edit Post Save (@) Hide

Bugs bugs bugs

f.

Ever since then I've been fixing bugs reported by the
(incredible) concepts community!

= Mostly on the C++ Slack space
And then, in November...

Posted by u/blelbach NVIDIA | Thrust | HPX | C++ Committee | CppCon | C++Now 3 months ago @

zig 2018 San Diego ISO C++ Committee Trip Report (Ranges v1 TS for C++20;

consensus on modules design; new Language and Library Evolution
Incubators)

The ISO C++ Committee met in San Diego, California us last wee
International Standard (IS), C++20. This meeting was the last m¢ s br C++20,
but existing proposals like modules (on track) and coroutines (g - put not
merged can still make C++20. We'll make our final decisions abg@es b |

meeting.

This week, we added the following features to the C++20 draft: -

e Ranges.

e void foo(Concept auto x)-style terse syntax.

& N000000000!

e consteval functions.

e std::is constant evaluated.

e constexpr union.

Current Status

= No new bugs have surfaced in a while (after fixing over 40!)

= Working towards merging this into trunk

Revision Contents
Files History
Status

Needs Review
Needs Review
Needs Review
Needs Review
Needs Review
Needs Review
Needs Review

Needs Review

Commits

Author
saar.raz
saar.raz
saar.raz
saar.raz
saar.raz
saar.raz
saar.raz

changyu

Stack (7 Open) Similar
Revision
D50360 [Concepts] Requires Expressions

D44352 [Concepts] Constrained template parameters

D43357 [Concepts] Function trailing requires clauses

D41910 [Concepts] Constrained partial specializations and function overloads.
D41569 [Concepts] Constraint enforcement and diagnostics

D41284 [Concepts] Associated constraints infrastructure.

D41217 [Concepts] Concept Specialization Expressions

D40381 Parse concept definition

Lessons Learned s

= Hacking on compilers is fun!

= Anyone with a Ctrl key can do it

= Be naive at first, learn from your mistakes (and from CR)
= Search really hard for developers’ manuals!

= Everything in the standard is there for a reason

= Take control of your compiler!

= The fastest way to get C++20

Questions?

requires <Q>

