
Computing On Encrypted
Data with C++

Max Leibovich

Part 0:
Introduction to Cryptography

A Brief History of Cryptography:
Symmetric Encryption

• 100 – 1 A.D. Caesar cipher (Shift cipher)
• 1553 Vigenère cipher (Poly-alphabetic Substitution Cipher)
• 1920s Enigma machine
• 1976 DES (Data Encryption Standard) Symmetric-Key Algorithm

• 1976 Diffie, Hellman and Merkle (DH key Exchange, Merkle's Puzzles)
• 1977 Rivest, Shamir and Adleman (RSA Public-Key Cryptosystem)

A Brief History of Cryptography:
Asymmetric Encryption

1978 Rivest, Adleman and Dertouzos: “On data banks and privacy homomorphisms”

What else can
we do with Encrypted Data?

1978 Rivest, Adleman and Dertouzos: “On data banks and privacy homomorphisms”

Untrusted Server

Plaintext Data

Plaintext Results

Encrypted Data

Encrypted Results

C
om

puta
tions C

om
pu

ta
tio

ns

Encrypt & Send

Receive & Decrypt

What else can
we do with Encrypted Data?

Part 1:
Partially Homomorphic Encryption

Where this idea came from?

Keygen 𝑘𝑘 : Choose random 𝑘𝑘-bit primes 𝑝𝑝, 𝑞𝑞

Compute 𝑛𝑛 ≔ 𝑝𝑝 ⋅ 𝑞𝑞 and 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 ⋅ 𝑞𝑞 − 1

Choose integer 1 < 𝑒𝑒 < 𝜙𝜙 𝑛𝑛

which is co-prime to 𝜙𝜙 𝑛𝑛 , i.e. gcd 𝑒𝑒,𝜙𝜙 𝑛𝑛 = 1

Compute 𝑑𝑑 ≔ 𝑒𝑒−1 mod𝜙𝜙 𝑛𝑛 , i.e. 𝑑𝑑 ⋅ 𝑒𝑒 ≡ 1 mod𝜙𝜙 𝑛𝑛

Public Key: 𝑝𝑝𝑘𝑘 = 𝑛𝑛, 𝑒𝑒 Secret Key: 𝑠𝑠𝑘𝑘 = 𝑛𝑛,𝑑𝑑

Enc𝑝𝑝𝑝𝑝= 𝑛𝑛,𝑒𝑒 𝑚𝑚 : 𝑐𝑐 ≔ 𝑚𝑚𝑒𝑒 mod 𝑛𝑛 Dec𝑠𝑠𝑝𝑝= 𝑛𝑛,𝑑𝑑 𝑐𝑐 : 𝑚𝑚 ≔ 𝑐𝑐𝑑𝑑 mod 𝑛𝑛

Lets look at “Textbook” RSA

Where this idea came from?

Enc𝑝𝑝𝑝𝑝= 𝑛𝑛,𝑒𝑒 𝑚𝑚 : 𝑐𝑐 ≔ 𝑚𝑚𝑒𝑒 mod 𝑛𝑛 Dec𝑠𝑠𝑝𝑝= 𝑛𝑛,𝑑𝑑 𝑐𝑐 : 𝑚𝑚 ≔ 𝑐𝑐𝑑𝑑 mod 𝑛𝑛

𝑐𝑐1 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚1 = 𝑚𝑚1
𝑒𝑒 mod 𝑛𝑛 𝑐𝑐2 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚2 = 𝑚𝑚2

𝑒𝑒 mod𝑛𝑛

𝑐𝑐1 ⋅ 𝑐𝑐2 = 𝑚𝑚1
𝑒𝑒 mod 𝑛𝑛 ⋅ 𝑚𝑚2

𝑒𝑒 mod 𝑛𝑛 = 𝑚𝑚1
𝑒𝑒 ⋅ 𝑚𝑚2

𝑒𝑒 mod 𝑛𝑛 = 𝑚𝑚1 ⋅ 𝑚𝑚2
𝑒𝑒 mod𝑛𝑛

= Enc𝑝𝑝𝑝𝑝 𝑚𝑚1 ⋅ 𝑚𝑚2 ⟹ Dec𝑠𝑠𝑝𝑝 𝑐𝑐1 ⋅ 𝑐𝑐2 = 𝑚𝑚1 ⋅ 𝑚𝑚2

RSA has the following property:

Lets look at “Textbook” RSA

Partially Homomorphic Encryptions

• Given groups 𝐺𝐺,∗ and 𝐻𝐻,∘ a function 𝑓𝑓:𝐺𝐺 → 𝐻𝐻 is a Homomorphism if it

preserves the operation, i.e. for all 𝑥𝑥,𝑦𝑦 ∈ 𝐺𝐺: 𝑓𝑓 𝑥𝑥 ∗ 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 ∘ 𝑓𝑓 𝑦𝑦

• Examples to Homomorphism:

𝑥𝑥 ⋅ 𝑦𝑦 = 𝑥𝑥 ⋅ 𝑦𝑦 𝑥𝑥 ⋅ 𝑦𝑦 𝑐𝑐 = 𝑥𝑥𝑐𝑐 ⋅ 𝑦𝑦𝑐𝑐 𝑒𝑒𝑥𝑥+𝑦𝑦 = 𝑒𝑒𝑥𝑥 ⋅ 𝑒𝑒𝑦𝑦 ln 𝑥𝑥 ⋅ 𝑦𝑦 = ln 𝑥𝑥 + ln 𝑦𝑦

• Multiplicatively Homomorphic Encryptions Enc 𝑥𝑥 ⋅ 𝑦𝑦 = Enc 𝑥𝑥 ⋅ Enc 𝑦𝑦

• RSA (1977)

• ElGamal (1985)

Partially Homomorphic Encryptions

• Additively Homomorphic Encryptions Enc 𝑥𝑥 + 𝑦𝑦 = Enc 𝑥𝑥 ⋅ Enc 𝑦𝑦

• Benaloh(1994)

• Paillier (1999)

• Homomorphic Encryption with respect to XOR Enc 𝑥𝑥 ⊕ 𝑦𝑦 = Enc 𝑥𝑥 ⋅ Enc 𝑦𝑦

• Goldwasser–Micali (1982)

• What can we do when we are restricted to a single operation?

Not Much!

Part 2:
Somewhat Homomorphic Encryption

Models Of Computation
• High-Level Programming

Language (e.g. C++)

• Low-Level Programming
Language (e.g. Assembly)

• Random-Access Machine

• Turing Machine

• Boolean / Arithmetic Circuits

All are Turing-complete, but there are Time and Space complexity tradeoffs

Why Boolean Circuits?

• Because { XOR, AND } is Turing-complete, ANY function can be

computed with a Boolean circuit consisting of only { XOR, AND } gates.

• Over Boolean values we have:

𝐀𝐀𝐀𝐀𝐀𝐀 𝑎𝑎, 𝑏𝑏 = 𝑎𝑎 ⋅ 𝑏𝑏 mod 2 𝐗𝐗𝐗𝐗𝐗𝐗 𝑎𝑎, 𝑏𝑏 = 𝑎𝑎 + 𝑏𝑏 mod 2

• Not necessarily the most efficient way to evaluate a function!

• If you can compute products and sums on encrypted bits,

you can compute ANY function on encrypted inputs!

• Example: Private Information Retrieval (PIR)

Server Input: array of 𝑛𝑛 bits 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 Client Input: index 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛

Server Output: nothing Client Output: bit 𝑥𝑥𝑗𝑗

Compare Indices 𝑎𝑎, 𝑏𝑏 ∈ 0,1 log2 𝑛𝑛 : eq 𝑎𝑎, 𝑏𝑏 = ∏1≤ 𝑝𝑝 ≤ log2 𝑛𝑛 𝑎𝑎𝑝𝑝 + 𝑏𝑏𝑝𝑝 + 1

PIR function:
𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝑗𝑗 = �

1≤𝑖𝑖≤𝑛𝑛
eq 𝑖𝑖, 𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖

𝑥𝑥1 …𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥𝑛𝑛

𝑗𝑗

𝑥𝑥𝑗𝑗

Why Boolean Circuits?

What objects can we add and multiply?

• Polynomials? 𝑥𝑥4 + 6𝑥𝑥3 + 2𝑥𝑥 + 4𝑥𝑥2 − 3𝑥𝑥 = 𝑥𝑥4 + 6𝑥𝑥3 + 4𝑥𝑥2 − 𝑥𝑥

5𝑥𝑥2 + 9𝑥𝑥 + 8 ⋅ 7𝑥𝑥 + 1 = 35𝑥𝑥3 + 68𝑥𝑥2 + 65𝑥𝑥 + 8

• Matrices? 1 1
1 0 + 0 1

−1 1 = 1 2
0 1

2 0
1 1 ⋅ −1 3

0 1 = −2 6
−1 4

• Why not Integers?!? 2 + 2 = 4 7 ⋅ 6 = 42

Keygen 𝑘𝑘 : Pick a random large 𝑘𝑘2-bit odd integer 𝑝𝑝 as the Secret Key

Enc𝑝𝑝 𝑚𝑚 ∈ 0,1 : Pick a random 𝑘𝑘5-bit integer 𝑞𝑞 and compute 𝑞𝑞 ⋅ 𝑝𝑝 a large multiple of 𝑝𝑝

Pick a random small 𝑘𝑘-bit integer 2𝑟𝑟 + 𝑚𝑚,

that is even when 𝑚𝑚 = 0, and odd when 𝑚𝑚 = 1

𝟎𝟎 𝒑𝒑 𝟐𝟐𝒑𝒑 𝟑𝟑𝒑𝒑 ⋯ 𝒒𝒒 − 𝟏𝟏 𝒑𝒑 𝒒𝒒𝒑𝒑 𝒒𝒒 + 𝟏𝟏 𝒑𝒑

Ciphertext will be 𝑐𝑐 ≔ 𝑞𝑞 ⋅ 𝑝𝑝 + 2𝑟𝑟 + 𝑚𝑚

The noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎

Example Symmetric
Encryption Scheme Over Integers

𝟎𝟎 𝒑𝒑 𝟐𝟐𝒑𝒑 𝟑𝟑𝒑𝒑 ⋯ 𝒒𝒒 − 𝟏𝟏 𝒑𝒑 𝒒𝒒𝒑𝒑 𝒒𝒒 + 𝟏𝟏 𝒑𝒑

The noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎

Dec𝑝𝑝 𝑐𝑐 ∈ ℤ : Compute 𝑐𝑐′ ≔ 𝑐𝑐mod∗ 𝑝𝑝 to recover the “noise”.

Where 𝑐𝑐mod∗ 𝑝𝑝 is the “Centered Modulo” operation that returns the

integer 𝑐𝑐′ ∈ − ⁄𝑝𝑝 2 , ⁄𝑝𝑝 2 such that 𝑝𝑝 divides 𝑐𝑐 − 𝑐𝑐′.

In other words: 1. 𝑐𝑐′ ≔ 𝑐𝑐mod𝑝𝑝 ;

2. 𝑖𝑖𝑓𝑓 𝑐𝑐′ > ⁄𝑝𝑝 2 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑐𝑐′ ≔ 𝑐𝑐′ − 𝑝𝑝;

Return 𝑚𝑚 ≔ 𝑐𝑐′ mod 2

Example Symmetric
Encryption Scheme Over Integers

𝟎𝟎 𝒑𝒑 𝟐𝟐𝒑𝒑 𝟑𝟑𝒑𝒑 ⋯ 𝒒𝒒 − 𝟏𝟏 𝒑𝒑 𝒒𝒒𝒑𝒑 𝒒𝒒 + 𝟏𝟏 𝒑𝒑

• How secure is this?

• If noise = 0 and we get two encryptions of 0: Enc𝑝𝑝 0 = 𝑞𝑞1𝑝𝑝, Enc𝑝𝑝 0 = 𝑞𝑞2𝑝𝑝

Recovering the Secret Key 𝑝𝑝 is easy: simply calculate 𝑝𝑝 = GCD 𝑞𝑞1𝑝𝑝, 𝑞𝑞2𝑝𝑝

• But if there is noise the GCD attack doesn’t work.

And we believe that neither does any other attack.

This is called the “Approximate GCD Assumption”.

The noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎

Security

𝟎𝟎 𝒑𝒑 𝟐𝟐𝒑𝒑 𝟑𝟑𝒑𝒑 ⋯ 𝒒𝒒 − 𝟏𝟏 𝒑𝒑 𝒒𝒒𝒑𝒑 𝒒𝒒 + 𝟏𝟏 𝒑𝒑

• How do we XOR two encrypted bits 𝑐𝑐1 = Enc𝑝𝑝 𝑚𝑚1 and 𝑐𝑐2 = Enc𝑝𝑝 𝑚𝑚2 ?

𝑐𝑐1 = 𝑞𝑞1𝑝𝑝 + 2𝑟𝑟1 + 𝑚𝑚1 𝑐𝑐2 = 𝑞𝑞2𝑝𝑝 + 2𝑟𝑟2 + 𝑚𝑚2

𝑐𝑐1 + 𝑐𝑐2 = 𝑝𝑝 ⋅ 𝑞𝑞1 + 𝑞𝑞2 + 2 ⋅ 𝑟𝑟1 + 𝑟𝑟2 + 𝑚𝑚1 + 𝑚𝑚2

On decryption, after mod∗ 𝑝𝑝: 2 ⋅ 𝑟𝑟1 + 𝑟𝑟2 + 𝑚𝑚1 + 𝑚𝑚2

after mod 2: 𝑚𝑚1 ⊕𝑚𝑚2
The noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎

Homomorphic Operations

𝟎𝟎 𝒑𝒑 𝟐𝟐𝒑𝒑 𝟑𝟑𝒑𝒑 ⋯ 𝒒𝒒 − 𝟏𝟏 𝒑𝒑 𝒒𝒒𝒑𝒑 𝒒𝒒 + 𝟏𝟏 𝒑𝒑

• How do we AND two encrypted bits 𝑐𝑐1 = Enc𝑝𝑝 𝑚𝑚1 and 𝑐𝑐2 = Enc𝑝𝑝 𝑚𝑚2 ?

𝑐𝑐1 = 𝑞𝑞1𝑝𝑝 + 2𝑟𝑟1 + 𝑚𝑚1 𝑐𝑐2 = 𝑞𝑞2𝑝𝑝 + 2𝑟𝑟2 + 𝑚𝑚2

𝑐𝑐1 ⋅ 𝑐𝑐2 = 𝑝𝑝 ⋅ 𝑞𝑞1𝑐𝑐2 + 𝑞𝑞2𝑐𝑐1 − 𝑞𝑞1𝑞𝑞2 + 2 ⋅ 𝑟𝑟1𝑟𝑟2 + 𝑟𝑟1𝑚𝑚2 + 𝑟𝑟2𝑚𝑚1 + 𝑚𝑚1 ⋅ 𝑚𝑚2

On decryption, after mod∗ 𝑝𝑝: 2 ⋅ 𝑟𝑟1𝑟𝑟2 + 𝑟𝑟1𝑚𝑚2 + 𝑟𝑟2𝑚𝑚1 + 𝑚𝑚1 ⋅ 𝑚𝑚2

after mod 2: 𝑚𝑚1 ⋅ 𝑚𝑚2
The noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎

Homomorphic Operations

Noise

𝟎𝟎 𝒑𝒑 𝟐𝟐𝒑𝒑 𝟑𝟑𝒑𝒑 ⋯ 𝒒𝒒 − 𝟏𝟏 𝒑𝒑 𝒒𝒒𝒑𝒑 𝒒𝒒 + 𝟏𝟏 𝒑𝒑

• What about the noise?

• 𝑐𝑐1 + 𝑐𝑐2 = 𝑝𝑝 ⋅ 𝑞𝑞1 + 𝑞𝑞2 + 2 ⋅ 𝑟𝑟1 + 𝑟𝑟2 + 𝑚𝑚1 + 𝑚𝑚2

noise ≈ 2 ⋅ (Initial Noise)

• 𝑐𝑐1 ⋅ 𝑐𝑐2 = 𝑝𝑝 ⋅ 𝑞𝑞1𝑐𝑐2 + 𝑞𝑞2𝑐𝑐1 − 𝑞𝑞1𝑞𝑞2 + 2 ⋅ 𝑟𝑟1𝑟𝑟2 + 𝑟𝑟1𝑚𝑚2 + 𝑟𝑟2𝑚𝑚1 + 𝑚𝑚1 ⋅ 𝑚𝑚2

noise ≈ (Initial Noise)2

The noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎

The noise grows after each operation!

𝟎𝟎 𝒑𝒑 𝟐𝟐𝒑𝒑 𝟑𝟑𝒑𝒑 ⋯ 𝒒𝒒 − 𝟏𝟏 𝒑𝒑 𝒒𝒒𝒑𝒑 𝒒𝒒 + 𝟏𝟏 𝒑𝒑

• Why is this bad?

• If 2𝑟𝑟 + 𝑚𝑚 mod 2 ≠ 𝑟𝑟′ mod 2 decryption outputs incorrect bit!

• This can happen when noise > ⁄𝑝𝑝 2

Initial noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎noise after computations = 𝟐𝟐′

The noise = 𝟐𝟐𝟐𝟐 + 𝒎𝒎

Noise

So, what did we accomplish?
• We can do lots of additions…

• And some multiplications, until we are no longer able to correctly decrypt…

• This is called: Somewhat Homomorphic Encryption.

• It Is already enough for some useful applications:

• PIR over small databases

• Algorithms implemented as polynomials with logarithmic degree

• …

• But, we can do much better!

Many C++ Implementations
• This scheme is called DGHV

• There are any many C++ implementations of it in GitHub, e.g.:

https://github.com/rinon/Simple-Homomorphic-Encryption

https://github.com/bogdan-kulynych/libshe

https://github.com/deevashwer/Fully-Homomorphic-DGHV-and-Variants

https://github.com/raduMMR/OMP-DGHV

https://github.com/andronat/libshe

https://eprint.iacr.org/2009/616
https://github.com/bogdan-kulynych/libshe
https://github.com/deevashwer/Fully-Homomorphic-DGHV-and-Variants
https://github.com/raduMMR/OMP-DGHV
https://github.com/andronat/libshe

Part 3:
Leveled Homomorphic Encryption

Noise and Compactness

• Recall that in the scheme over integers we just saw:

• Noise grows exponentially with the multiplicative depth.

• Scheme is not compact as ciphertext size grows

with the size of the circuit.

• Let’s see how to tackle these problems…

Noise
Management Techniques

BGV: A scheme over polynomial rings 𝑅𝑅𝑞𝑞 = ⁄ℤ𝑞𝑞 𝑋𝑋 𝑋𝑋𝑑𝑑 + 1 based

on the hardness of “Ring Learning With Errors” (RLWE) problem.

• How do objects in polynomial rings 𝑅𝑅𝑞𝑞 = ⁄ℤ𝑞𝑞 𝑋𝑋 𝑋𝑋𝑑𝑑 + 1 look like?

Think of them as a vectors of size 𝒅𝒅 where each element is an integer in ℤ𝒒𝒒.

• In BGV the noise increases linearly with the multiplicative depth!

Lets see how…

ℤ𝑞𝑞 ℤ𝑞𝑞 ℤ𝑞𝑞 … ℤ𝑞𝑞 ℤ𝑞𝑞
𝟏𝟏 𝟐𝟐 𝟑𝟑 𝒅𝒅𝒅𝒅 − 𝟏𝟏

https://eprint.iacr.org/2011/277

Modulus-Switching

• Ciphertext 𝒄𝒄 ∈ 𝑅𝑅𝑄𝑄 for large modulus 𝑄𝑄 is an encryption of 𝑚𝑚.

• Scale 𝒄𝒄 by ⁄𝑞𝑞 𝑄𝑄 and round appropriately with a smaller modulus 𝑞𝑞 ≪ 𝑄𝑄.

The resulted ciphertext 𝒄𝒄′ ∈ 𝑅𝑅𝑞𝑞 is also a valid encryption of 𝑚𝑚.

• This allows to reduce the ciphertext noise by a factor ≈ ⁄𝑞𝑞 𝑄𝑄

without knowing the secret-key!
𝑄𝑄

𝑞𝑞𝒄𝒄′ = ⁄𝑞𝑞 𝑄𝑄 ⋅ 𝒄𝒄 𝑞𝑞 𝒄𝒄

Re-Linearization (Key-Switching)

• Given BGV ciphertexts 𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐 decryptable to messages 𝑚𝑚1, 𝑚𝑚2 under key 𝒔𝒔.

• After multiplication ciphertext 𝒄𝒄⋆ = 𝒄𝒄1 ⋅ 𝒄𝒄2 has roughly 𝑑𝑑2 elements which is

decryptable with a longer key 𝒔𝒔⊗ 𝒔𝒔.

𝒄𝒄1 𝒄𝒄2

𝒔𝒔
𝒄𝒄⋆𝒔𝒔 ⊗ 𝒔𝒔

Re-Linearization (Key-Switching)

• To reduce the size of 𝒄𝒄⋆ back to 𝑑𝑑 we use Re-Linearization technique:

1. Encrypt 𝒔𝒔[𝑖𝑖] and 𝒔𝒔 𝑖𝑖 ⋅ 𝒔𝒔 𝑗𝑗 for 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑑𝑑 under a new secret key 𝒕𝒕.

2. Place encryptions of Enc𝒕𝒕 𝒔𝒔 𝑖𝑖 , Enc𝒕𝒕 𝒔𝒔 𝑖𝑖 ⋅ 𝒔𝒔 𝑗𝑗 for 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑑𝑑 in public key.

3. Convert long ciphertext 𝒄𝒄⋆ to a short one 𝒄𝒄′ (decryptable by new key 𝒕𝒕).

• Tradeoff between long ciphertexts (many) and long secret key (single).

𝒄𝒄⋆𝒕𝒕 𝒄𝒄′𝒔𝒔 ⊗ 𝒔𝒔Enc𝒕𝒕 𝒔𝒔 𝑖𝑖
Enc𝒕𝒕 𝒔𝒔 𝑖𝑖 ⋅ 𝒔𝒔 𝑗𝑗

Leveled Homomorphic Encryption
• Apply the modulus-switching technique after every multiplication, using a

ladder of gradually decreasing moduli 𝑞𝑞𝐿𝐿 > 𝑞𝑞𝐿𝐿−1 > ⋯ > 𝑞𝑞1 > 𝑞𝑞0.

• Freshly encrypted ciphertexts are over 𝑅𝑅𝑞𝑞𝐿𝐿 and

on ciphertexts over 𝑅𝑅𝑞𝑞0 we cannot compute anymore.

• After each multiplication preform a Re-Linearization on the resulted
ciphertext.

• Performing these two operations together is sometimes called:
“Ciphertext Refresh”.

HElib
https://github.com/shaih/HElib

• C++ library that implements BGV HE scheme, along with many optimizations.

NTL: A Library for doing Number Theory

https://github.com/shaih/HElib

Initialization

𝑘𝑘 – Security parameter (2𝑝𝑝)

𝐿𝐿 – Number of levels (multiplicative depth)

𝑝𝑝 – Prime for plaintext base

𝑟𝑟 – Plaintext lifting (𝑝𝑝𝑟𝑟 is the plaintext space)

𝑠𝑠 – Minimum number of slots

FindM is a helper function to find the

appropriate size of the polynomial ring

𝑅𝑅 = ⁄ℤ 𝑋𝑋 Φ𝑚𝑚 𝑋𝑋 where Φ𝑚𝑚 𝑋𝑋 is the 𝑚𝑚-th

cyclotomic polynomial satisfying given

parameters.

This will determine the size of our vectors.

Object for maintaining parameters.

Provides access methods and some utility functions. Build modulus chain 𝑞𝑞𝐿𝐿 > 𝑞𝑞𝐿𝐿−1 > ⋯ > 𝑞𝑞1 > 𝑞𝑞0
for a circuit of depth 𝐿𝐿 levels.

FHEPubKey includes the public encryption key, a

vector of key-switching matrices, and another

data structures for advanced operations.

It provides an encryption method, and various

methods to find and access key-switching matrices

The FHESecKey class is derived from FHEPubKey. It contains

an additional data member with the secret key.

It also provides methods for key-generation, decryption,

and generation of key-switching matrices.Generate a secret-key with a specified Hamming

weight (H.W helps with noise estimation later on)

Add extra information for re-linearization.

There are several strategies for deciding what key-

switching matrices to choose during key-generation.Actual size of the ciphertext vector

Basic Arithmetic

Multiplication
followed by
ciphertext refresh

Many Operations on Ciphertexts

SIMD (Ciphertext Packing)
• Encrypt and pack multiple plaintext values into a single ciphertext.

• Main idea: Chinese Remainder Theorem over Polynomial Rings.

• Choose 𝑝𝑝 such that 𝑅𝑅𝑝𝑝 splits into 𝑠𝑠 smaller rings 𝑅𝑅𝔭𝔭1 , … ,𝑅𝑅𝔭𝔭𝑠𝑠

Plaintext Space: 𝑅𝑅𝑝𝑝 = ⁄ℤ𝑝𝑝 𝑋𝑋 𝑋𝑋𝑑𝑑 + 1

𝑅𝑅𝔭𝔭1 𝑅𝑅𝔭𝔭2 𝑅𝑅𝔭𝔭𝑠𝑠𝑅𝑅𝔭𝔭𝑠𝑠−1…

SIMD (Ciphertext Packing)
• This way we can process arrays of values at almost no extra cost.

• In practice: hundreds – thousands of slots in each ciphertext

4 2 … 3
𝟏𝟏 𝟐𝟐 𝒔𝒔

5 1 … 4

9 3 … 7

+

=

1 3 … 2
𝟏𝟏 𝟐𝟐 𝒔𝒔

5 2 … 2

5 6 … 4

•

=

𝟏𝟏 𝟐𝟐 𝒔𝒔

rotate(2)

1 2 5… 4

4 5 …1 2

𝒔𝒔 − 𝟏𝟏 𝟏𝟏 𝟐𝟐 𝒔𝒔

shift(2)

1 2 5… 4

0 0 …1 2

𝒔𝒔 − 𝟏𝟏

EncryptedArray:
Operations on Arrays of Slots

Computing On Integers
• Includes routines for addition/multiplication and comparisons of

integers in binary representation (binaryArith.h, binaryCompare.h):

CtPtrs:
Unified interface
for vector of
pointers to
ciphertexts

Part 4:
Fully Homomorphic Encryption

What have we
achieved until now?

• We saw Somewhat and Leveled Homomorphic Encryption schemes.

• Still unable to compute arbitrary circuits / functions on encrypted data!

• Since suggested in 1978 by Rivest, Adleman and Dertouzos not feasible.

• This was the general situation until October 2008…

when Craig Gentry came up with the

first suggested scheme for a

Fully Homomorphic Encryption!

The “Bootstrapping method”

noise = ⁄𝑝𝑝 2

noise = 0

Initial noise of “fresh” ciphertextProblem: sums and products increase noiseSolution: need a noise-reduction procedureWhat is the best noise-reduction procedure?Decryption!
It acts on ciphertext and eliminates the noise

Dec 𝑐𝑐

𝑐𝑐 = Enc 𝑏𝑏 𝑠𝑠𝑘𝑘

𝑏𝑏

The “Bootstrapping method”

noise = ⁄𝑝𝑝 2

noise = 0

Dec 𝑐𝑐

𝑐𝑐 = Enc 𝑏𝑏 𝑠𝑠𝑘𝑘

𝑏𝑏

New problem: cannot give away 𝑠𝑠𝑘𝑘! It exposes all data!Solution: can give away Enc 𝑠𝑠𝑘𝑘 – “Circular Security”

Enc 𝑠𝑠𝑘𝑘

Now to reduce the noise: Homomorphically evaluate Dec 𝑐𝑐 !

Enc 𝑏𝑏

The “Bootstrapping method”

Dec 𝑐𝑐

𝑐𝑐 = Enc 𝑏𝑏

Regardless of the noise in the input En𝑐𝑐 𝑏𝑏 ,
the noise level in the output Enc 𝑏𝑏 is fixed.

Enc 𝑏𝑏

Enc 𝑠𝑠𝑘𝑘

noise = ⁄𝑝𝑝 2

noise = 0

Bottomline: whenever noise level increases beyond a limit, use
bootstrapping to reset it to a fixed level, and repeat until done!

From “Somewhat” to “Fully”

SWH – Can evaluate some circuits

Bootstrappable –
Can also evaluate
decryption circuits
augmented by
AND,XOR gates

FHE – Can evaluate all circuits

Dec 𝑐𝑐

𝑐𝑐1 Enc 𝑠𝑠𝑘𝑘

Dec 𝑐𝑐

𝑐𝑐2 Enc 𝑠𝑠𝑘𝑘
Augmented Decryption Circuit

AND

Enc 𝑐𝑐1 ⋅ 𝑐𝑐2
Dec 𝑐𝑐

𝑐𝑐1 Enc 𝑠𝑠𝑘𝑘

Dec 𝑐𝑐

𝑐𝑐2 Enc 𝑠𝑠𝑘𝑘
Augmented Decryption Circuit

XOR

Enc 𝑐𝑐1 ⊕ 𝑐𝑐2

FHEW
https://github.com/lducas/FHEW

• Problem: Bootstrapping is an expensive process (5-30 min. per ctxt in HElib)

• Solution: Bootstrapping Homomorphic Encryption in less than a second!

• Bootstrapping ciphertexts after every single operation.

• Use of “cheap” and functionally complete NAND gate.

• Works only over binary plaintext.

https://github.com/lducas/FHEW

FHEW

TFHE
https://github.com/tfhe/tfhe

• Very fast gate-by-gate bootstrapping (≈ 13 milliseconds).

• Supports the homomorphic evaluation of the 10 binary gates

(NAND, OR, AND, XOR, XNOR, NOR, etc.), as well as the negation

(NOT) and the MUX(𝑎𝑎,𝑏𝑏,𝑐𝑐) = 𝑎𝑎 ? 𝑏𝑏 : 𝑐𝑐 gate.

• Both FHEW an TFHE are based on the GSW cryptosystem.

https://github.com/tfhe/tfhe
https://eprint.iacr.org/2013/340

Additional Implementations & Links
• HEAAN – Supports fixed point arithmetics (also with Bootstrapping)

• SEAL – Well-documented C++ library by Microsoft

• PALISADE – General purpose C++ library for lattice cryptography

• cuFHE – CUDA (NVIDIA GPU) accelerated FHE library

• Daniele Micciancio FHE Page

• Vinod Vaikuntanathan FHE Page

• FHE Standardization Webpage

https://github.com/kimandrik/HEAAN
https://github.com/kimandrik/HEAANBOOT
https://github.com/Microsoft/SEAL
https://git.njit.edu/palisade/PALISADE
https://github.com/vernamlab/cuFHE
http://cseweb.ucsd.edu/%7Edaniele/LatticeLinks/FHE.html
https://people.csail.mit.edu/vinodv/FHE/FHE-refs.html
http://homomorphicencryption.org/

Summary
• We have seen:

• computing over encrypted data is possible via FHE.

• it is still quite challenging, not trivial, and relatively slow.

• several C++ implementations of FHE exist.

• There are other methods to compute over encrypted data, e.g.:

• Secure Multi-Party Computation (MPC)

Thank You!

	Computing On Encrypted Data with C++
	Part 0: �Introduction to Cryptography
	A Brief History of Cryptography: �Symmetric Encryption
	A Brief History of Cryptography: �Asymmetric Encryption
	What else can� we do with Encrypted Data?
	What else can� we do with Encrypted Data?
	Part 1: �Partially Homomorphic Encryption
	Where this idea came from?
	Where this idea came from?
	Partially Homomorphic Encryptions
	Partially Homomorphic Encryptions
	Part 2: �Somewhat Homomorphic Encryption
	Models Of Computation
	Why Boolean Circuits?
	Why Boolean Circuits?
	What objects can we add and multiply?
	Example Symmetric�Encryption Scheme Over Integers
	Example Symmetric�Encryption Scheme Over Integers
	Security
	Homomorphic Operations
	Homomorphic Operations
	Noise
	Noise
	So, what did we accomplish?
	Many C++ Implementations
	Part 3: �Leveled Homomorphic Encryption
	Noise and Compactness
	Noise �Management Techniques
	Modulus-Switching
	Re-Linearization (Key-Switching)
	Re-Linearization (Key-Switching)
	Leveled Homomorphic Encryption
	HElib
	Initialization
	Basic Arithmetic
	Many Operations on Ciphertexts
	SIMD (Ciphertext Packing)
	SIMD (Ciphertext Packing)
	EncryptedArray:�Operations on Arrays of Slots
	Computing On Integers
	Part 4: �Fully Homomorphic Encryption
	What have we �achieved until now?
	The “Bootstrapping method”
	The “Bootstrapping method”
	The “Bootstrapping method”
	From “Somewhat” to “Fully”
	FHEW
	FHEW
	TFHE
	Additional Implementations & Links
	Summary
	Thank You!

