
The future of C++ and heterogeneous
programming

Michael Wong
Codeplay Software

VP of Research and Development
http:://wongmichael.com/about

michael@codeplay.com

Jeruaslem 2018

Who am I?

Ported TensorFlow
to open standards

using SYCL

Releasing open-
source, open-

standards based AI
acceleration tools:
SYCL-BLAS, SYCL-

ML, VisionCpp

Build LLVM-based
compilers for
accelerators

Implement OpenCL
and SYCL for
accelerator
processors

VP of R&D of
Codeplay
Chair of SYCL Heterogeneous Programming
Language
C++ Directions Group
ISOCPP.org Director, VP
http://isocpp.org/wiki/faq/wg21#michael-
wong
Head of Delegation for C++ Standard for
Canada
Chair of Programming Languages for Standards
Council of Canada
Chair of WG21 SG19 Machine Learning
Chair of WG21 SG14 Games Dev/Low
Latency/Financial Trading/Embedded
Editor: C++ SG5 Transactional Memory
Technical Specification
Editor: C++ SG1 Concurrency Technical
Specification
MISRA C++ and AUTOSAR
wongmichael.com/about
We build GPU compilers for
semiconductor companies
• Now working to make AI acceleration

safe for automotive

http://isocpp.org/wiki/faq/wg21

Acknowle
dgement
Disclaimer

Numerous people internal and external to the original
C++/Khronos group, in industry and academia, have made
contributions, influenced ideas, written part of this
presentations, and offered feedbacks to form part of this talk.
Specifically, Paul Mckenney, Joe Hummel, Bjarne Stroustrup
for some of the slides.

I even lifted this acknowledgement and disclaimer from some
of them.

But I claim all credit for errors, and stupid mistakes. These
are mine, all mine!

Legal Disclaimer

THIS WORK REPRESENTS THE VIEW OF THE
AUTHOR AND DOES NOT NECESSARILY
REPRESENT THE VIEW OF CODEPLAY.

OTHER COMPANY, PRODUCT, AND SERVICE
NAMES MAY BE TRADEMARKS OR SERVICE

MARKS OF OTHERS.

Partners

Codeplay - Connecting AI to Silicon

Customers

C++ platform via the SYCL™ open standard, enabling
vision & machine learning e.g. TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Products
Automotive (ISO 26262)

IoT, Smartphones & Tablets
High Performance Compute (HPC)

Medical & Industrial

Technologies: Vision Processing
Machine Learning

Artificial Intelligence
Big Data Compute

Addressable Markets

High-performance software solutions
for custom heterogeneous systems

Enabling the toughest processor
systems with tools and middleware
based on open standards

Established 2002 in Scotland

~70 employees

Company

3 Act Play
• Where is C++ Standard now?

• What is Parallelism in C++ 11, 14, 17, 20,
23?

• Is there a direction for C++?

• What gets me up every morning?

C++11,14,17“No more Raw Food”

Don’t use raw numbers, do type-rich programming with UDLDon’t use

Don’t declare, use auto whenever possibleDon’t declare

Don’t use raw NULL or (void *) 0, use nullptrDon’t use

Don’t use raw new and delete, use unique_ptr/shared_ptrDon’t use

Don’t use heap-allocated arrays, use std::vector and std::string, or the new VLA, then dynarray<>Don’t use

Don’t use functors, use lambdasDon’t use

Don’t use raw loops; use STL algorithms, ranged-based for loops, and lambdasDon’t use

Rule of Three? Rule of Zero or Rule of Five.Rule

Parallelism “Use the right abstraction”
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2

Atomic, Fences, lockfree, futures,
counters, transactions

C++11/14/17 atomics, Concurrency TS1,
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17
parallel algorithms, for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC,
Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa Executors, Execution Context, Affinity

TLS EALS

Exception handling in concurrent
environment

EH reduction properties

Act 1

• Where is C++ Standard
now?

• What is Parallelism in
C++ 11, 14, 17, 20, 23?

• Is there a direction for
C++?

C++
Standard

ratification

C++ is more
popular

than ever

ISO C++ Standard

C++ Std Timeline/status
https://isocpp.org/std/status

14

So What is the best
feature of C++17

• No Concepts

• No Unified Call Syntax

• No Default Comparison

• No operator dot

• No Contracts

• No Modules

• No Transactional Memory

• Parallel STL Algorithm
• Execution policy
• Thread of Execution
• Progress Guarantees

Priorities for C++ 20
• Concepts (in the WP)
• Modules (offering proper modularity and dramatic

compile-time improvements)
• Ranges (incl., some of the infinite sequence

extensions to the TS)
• Networking which means

• we need Executors in IS20
• Concepts in the standard library

C++20 if time permits
• Contracts as specified in [GDR,2016],

[GDR,2017].
• Coroutines [Nishanov,2017].
• Recommendation

• Additions beyond that should be discouraged as
time sinks and distractions.

• Proposals for minor features should be given
priority if and only if they support the priority
items

C++ 20 Language Features
• Most notably, the Concepts

Technical Specification has
been merged into C++20!

• Template parameter lists for
generic lambdas. T

• Designated initializers.
• Lambda capture [=, *this]
• A __VA_OPT__ macro to

make variadic macros easier
to use.

• Default member initializers
for bitfields

• A tweak to C++17’s
constructor template
argument deduction rules

• Fixing const-qualified
pointers to members

• The most significant new feature
voted in was operator<=>,

• Range-based for statements with
initializer.

• Lambdas is unevaluated contexts.
• Default constructible and assignable

stateless lambdas.
• Simplifying implicit lambda capture.
• Fixing small functionality gaps in

constraints.
• Deprecating the notion of “plain old

data” (POD).
• Access checking on specializations.
• const mismatch with defaulted copy

constructor.
• ADL and function templates that are

not visible.
• Core issue 1581: when are constexpr

member functions defined?

http://wg21.link/n4641
http://wg21.link/p0428
http://wg21.link/p0329
http://wg21.link/p0409
http://wg21.link/p0306
http://wg21.link/p0683
http://wg21.link/p0702
http://wg21.link/p0704
http://wg21.link/p0515
http://wg21.link/p0614
http://wg21.link/p0315
http://wg21.link/p0624
http://wg21.link/p0588
http://wg21.link/p0857
http://wg21.link/p0767
http://wg21.link/p0692
http://wg21.link/p0641
http://wg21.link/p0846
http://wg21.link/p0859

More C++20 Language Features
• Language support for empty

objects
• Relaxing the structured

bindings customization point
finding rules.

• Structured bindings in
accessible members.

• Allow pack expansion in
lambda init-capture.

• Symmetry for <=>
• Likely and unlikely attributes
• Down with typename!
• Relaxing range-based for

loop’s customization point
finding rules

• Support for contract-based
programming in C++20

• Class types in non-type
template parameters.

• Allowing virtual function
calls in constant
expressions.

• Prohibit aggregates with
user-declared
constructors.

• Efficient sized deletion for
variable-sized classes.

http://wg21.link/p0840
http://wg21.link/p0961
http://wg21.link/p0969
http://wg21.link/p0780
http://wg21.link/p0905
http://wg21.link/p0479
http://wg21.link/p0634
http://wg21.link/p0962
http://wg21.link/p0542
http://wg21.link/p0732
http://wg21.link/p1064
http://wg21.link/p1008
http://wg21.link/p0722

More C++ 20 Language Features
• Abbreviated function templates

(AFTs).
• Improvements to return-type-

requirements.
• Immediate functions.
• std::is_constant_evaluated()
• try / catch blocks in constexpr

functions.
• Allowing dynamic_cast and

polymorphic typeid in constant
expressions.

• Changing the active member of a
union inside constexpr

• char8_t: a type for UTF-8 characters
and strings.

• Access control in contract conditions.
• Revising the C++ memory model.
• Weakening release sequences.
• Nested inline namespaces
• Signed integers are two’s complement

• Consistency improvements for <=> and
other comparison operators.

• Conditionally explicit constructors, a.k.a.
explicit(bool).

• · Deprecate implicit capture of this via [=].
• · Integrating feature-test macros into the

C++ working draft.
• · A tweak to the rules about when certain

errors related to a class being abstract are
reported.

• · A tweak to the treatment of padding bits
during atomic compare-and-exchange
operations.

• · Tweaks to the __VA_OPT__ preprocessor
feature.

• · Updating the reference to the Unicode
standard.

http://wg21.link/p1141
http://wg21.link/p1084
http://wg21.link/p1073
http://wg21.link/p0595
http://wg21.link/p1002
http://wg21.link/p1327
http://wg21.link/p1330
http://wg21.link/p0482
http://wg21.link/p1289
http://wg21.link/p0668
http://wg21.link/p0982
http://wg21.link/p1094
http://wg21.link/p1236
http://wg21.link/p1120
http://wg21.link/p0892
http://wg21.link/p0806
http://wg21.link/p0941
http://wg21.link/p0929
http://wg21.link/p0528
http://wg21.link/p1042
http://wg21.link/p1025

C++20 Library Features
• Support for detecting

endianness
programmatically

• Repairing elementary
string conversions (also a
Defect Report)

• Improvements to the
integration of C++17 class
template argument
deduction into the
standard library (also a
Defect Report)

• Extending make_shared to
support arrays

• Transformation trait remove_cvref
• Treating unnecessary decay
• Using nodiscard in the standard

library
• Make std::memory_order a scoped

enumeration
• Synchronized buffered ostream
• A utility to convert pointer-like

objects to raw pointers
• Add constexpr modifiers to

functions in <algorithm> and
<utility> headers.

• constexpr for std::complex
• Atomic shared_ptr
• Floating-point atomics
• De-pessimize legacy <numeric>

algorithms with std::move
• String prefix and suffix checking,

i.e. starts_with() and ends_with()

http://wg21.link/p0463
http://wg21.link/p0682
http://wg21.link/p0739
http://wg21.link/p0674
http://wg21.link/p0550
http://wg21.link/p0777
http://wg21.link/p0600
http://wg21.link/p0439
http://wg21.link/p0053
http://wg21.link/p0653
http://wg21.link/p0202
http://wg21.link/p0415
http://wg21.link/p0718
http://wg21.link/p0020
http://wg21.link/p0616
http://wg21.link/p0457

More C++20 library Features
• calendar and timezone

library.
• std::span
• <version> header
• Tweak on how unordered

containers are compared
• String::reserve() should not

shrink
• User specializations of

function templates in
namespace std

• Manipulators for C++
synchronized buffer ostream

• constexpr iterator
requirements

• The most notable addition at this
meeting was standard library Concepts.

• atomic_ref
• Bit-casting object representations
• Standard library specification in a

Concepts and Contracts world
• Checking for the existence of an element

in associative containers
• Add shift() to <algorithm>
• Implicit conversion traits and utility

functions
• Integral power-of-2 operations
• The identity metafunction
• Improving the return value of erase()-like

algorithms
• constexpr comparison operators for

std::array
• constexpr for swap and related functions
• fpos requirements
• Eradicating unnecessarily explicit default

constructors
• Removing some facilities that were

deprecated in C++17 or earlier

http://wg21.link/p0355
http://wg21.link/p0122
http://wg21.link/p0754
http://wg21.link/p0809
http://wg21.link/p0966
http://wg21.link/p0551
http://wg21.link/p0753
http://wg21.link/p0858
http://wg21.link/p0898
http://wg21.link/p0019
http://wg21.link/p0476
http://wg21.link/p0788
http://wg21.link/p0458
http://wg21.link/p0769
http://wg21.link/p0758
http://wg21.link/p0556
http://wg21.link/p0887
http://wg21.link/p0646
http://wg21.link/p1023
http://wg21.link/p0879
http://wg21.link/p0759
http://wg21.link/p0935
http://wg21.link/p0619

More C++20 Library Features
• The most notable addition at this meeting was

merging the Ranges TS into C++20!
• Fixing operator>>(basic_istream&, CharT*).

• variant and optional should propagate
copy/move triviality.

• visit<R>: explicit return type for visit.

• <chrono> zero(), min(), and max() should be
noexcept.

• constexpr in std::pointer_traits.

• Miscellaneous constexpr bits.

• unwrap_ref_decay and unwrap_reference

• reference_wrapper for incomplete types

• A sane variant converting constructor

• std::function move constructor should be
noexcept

• std::assume_aligned

• Smart pointer creation with default
initialization

• Improving completeness requirements for
type traits)

• Remove CommonReference requirement from
StrictWeakOrdering (a.k.a fixing relations)

• Utility functions to implement uses-allocator
construction

• Should span be Regular?

• Make stateful allocator propagation more
consistent for operator+(basic_string))

• Simplified partial function application

• Heterogeneous lookup for unordered
containers

• Adopt consistent container erasure from
Library Fundamentals v2

http://wg21.link/p0896
http://wg21.link/p0487
http://wg21.link/p0602
http://wg21.link/p0655
http://wg21.link/p0972
http://wg21.link/p1006
http://wg21.link/p1032
http://wg21.link/p0318
http://wg21.link/p0357
http://wg21.link/p0608
http://wg21.link/p0771
http://wg21.link/p1007
http://wg21.link/p1020
http://wg21.link/p1285
http://wg21.link/p1248
http://wg21.link/p0591
http://wg21.link/p1085
http://wg21.link/p1165
http://wg21.link/p0356
http://wg21.link/p0919
http://wg21.link/p1209

Pre-C++11 projects

ISO number Name Status What is it? C++17?

ISO/IEC TR
18015:2006

Technical Report on C++
Performance

Published 2006 (ISO store)
Draft: TR18015 (2006-02-15) C++ Performance report No

ISO/IEC TR
19768:2007

Technical Report on C++ Library
Extensions

Published 2007-11-15 (ISO store)
Draft: n1745 (2005-01-17)
TR 29124 split off, the rest merged into C++11

Has 14 Boost libraries, 13 of
which was added to C++11.

N/A (mostly already
included into C++11)

ISO/IEC TR
29124:2010

Extensions to the C++ Library to
support mathematical special
functions

Published 2010-09-03 (ISO Store)
Final draft: n3060 (2010-03-06). Under
consideration to merge into C++17 by p0226 (2016-
02-10)

Really, ORDINARY math
today with a Boost and
Dinkumware
Implementation

YES

ISO/IEC TR
24733:2011

Extensions for the programming
language C++ to support decimal
floating-point arithmetic

Published 2011-10-25 (ISO Store)
Draft: n2849 (2009-03-06)
May be superseded by a future Decimal TS or
merged into C++ by n3871

Decimal Floating Point
decimal32
decimal64
decimal128

No. Ongoing work in
SG6

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43351
http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43289
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50511
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3060.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0226r0.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38843
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2849.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3871.html

Status after Nov SAN C++ Meeting

I S O
N U M B E R N A M E S TAT U S L I N K S C + + 2 0 ?

ISO/IEC TS
19841:2015

Transactional
Memory TS

Published 2015-09-16, (ISO Store).
Final draft: n4514 (2015-05-08)

Composable lock-free
programming that scales

No. Already in GCC 6 release and
waiting for subsequent usage
experience.

ISO/IEC TS
19217:2015

C++ Extensions
for Concepts

Published 2015-11-13. (ISO Store).
Final draft: n4553 (2015-10-02)
Current draft: p0734r0 (2017-07-
14)
Merged into C++20 (with
modifications).

Constrained templates Merged into C++20, including
(now) abbreviated function
templates!

Executors Abstraction for where/how code
runs in a concurrent context

Lite form headed for C++20, rest
aiming for C++23

Coroutines TS Resumable functions, based on
Microsoft’s await design Published! C++20 merge uncertain

Reflection TS Static code reflection mechanisms PDTS ballot underway; publication
expected in early 2019

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66343
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0734r0.pdf
https://www.iso.org/standard/73008.html

Concepts: compromised design for
Abbreviated Function Template

void f(Concept auto x);
Concept auto f(Concept auto x);

Status after Nov SAN C++ Meeting

ISO number Name Status What is it? C++20?

ISO/IEC TS
19571:2016

C++ Extensions for
Concurrency

Published 2016-01-19. (ISO Store) Final draft:
p0159r0 (2015-10-22)

improvements to future, latches and
barriers, atomic smart pointers

Latches, atomic<shared_ptr<t>> merged
into C++20. Already in Visual Studio release
and Anthony Williams Just Threads! and
waiting for subsequent usage experience.

ISO/IEC TS
19568:2017

C++ Extensions for
Library Fundamentals,
Version 2

Published 2017-03-30. (ISO Store) Draft: n4617
(2016-11-28)

source code information capture and various
utilities Published! Parts of it merged into C++17

ISO/IEC DTS
21425:2017 Ranges TS Published 2017-12-05. (ISO Store) Draft: n4685

(2017-07-31) Range-based algorithms and views Merged in C++20

ISO/IEC TS
19216:2018 Networking TS Published 2018-04-24. (ISO Store) Draft n4734

(2017-04-04). Latest draft: n4771 (2018-10-08) Sockets library based on Boost.ASIO Published. But may not be added to C++20.

ISO/IEC TS
21544:2018 Modules V1 Published 2018-05-16. (ISO Store) Final Draft

n4720 (2018-01-29)
A component system to supersede the
textual header file inclusion model Published as a TS

Modules V2 Improvements to Modules v1, including a
better transition path On track to be merged into C++20

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65242
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
https://www.iso.org/standard/70587.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf
https://www.iso.org/standard/70587.html
https://www.iso.org/standard/70910.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4685.pdf
https://www.iso.org/standard/64030.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4734.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4771.pdf
https://www.iso.org/standard/71051.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4720.pdf

Status after Nov SAN C++ Meeting

ISO number Name Status What is it? C++20?

ISO/IEC DTS 19568:xxxx Numerics TS Early development. Draft
p0101 (2015-09-27) Various numerical facilities Under active development

ISO/IEC DTS 19571:xxxx Concurrency TS 2 Early development

Exploring , lock-free,
hazard pointers, RCU,
atomic views, concurrent
data structures

Under active
development. Possible
new clause

ISO/IEC TS 19570:2018 Parallelism TS 2
Published 2018-11-15. (ISO
Store). Draft: n4773 (2018-
10-08)

task blocks, progress
guarantees, SIMD<T>, vec,
no_vec loop based
execution policy

Published. Headed into
C++20

ISO/IEC DTS 19841:xxxx Transactional Memory TS 2 Early development
Exploring on_commit,
in_transaction. Lambda-
based executor model.

Under active
development.

ISO/IEC DTS 19568:xxxx Graphics TS Early development. Draft
p0267r8 (2018-06-26)

2D drawing API using Cairo
interface, adding stateless
interfacec

Restarted after being
shutdown.

ISO/IEC DTS 19568:xxxx Library Fundamental V3 Initial draft, early
development

Maybe mdspan and
expected<T> Under development

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0101r0.html
https://www.iso.org/standard/70588.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4773.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0267r8.pdf

Act 2

• Where is C++ Standard
now?

• What is Parallelism in
C++ 11, 14, 17, 20, 23?

• Is there a direction for
C++?

SG1 Par/Con

SG5
Transactional

Memory

SG14 Low
Latency

…

3

…
…

…

…

…

…

…

…

The Parallel and concurrency planets
of C++ today

So Why do
we need to
standardize
concurrency?

Reflects the real world
•Multi-core processors
•Solutions for very large problems
•Internet programming

Standardize existing
practice
•C++ threads=OS threads
•shared memory
•Loosely based on POSIX, Boost

thread
•Does not replace other specifications

•MPI, OpenMP, UPC,
autoparallelization, many others

Can help existing advanced
abstractions
•TBB, PPL, Cilk,

Concurrency
Language
and Library

• TLS
• Static duration variable

initialization/destruction
• Memory model
• Atomic types and operations
• Lock-free programing
• Fences
• Dependence based Ordering

Core: what
does it mean

to share
memory and

how it
affects

variables

• How to create/synchronize/terminate
threads,

• Thread , mutex , locks
• RAII for locking, type safe
• propagate exceptions
• A few advanced abstraction

• Async() , promises and futures
• parallel STL

•Library:
threads and

mutexes

What we
got in C++

•Low level support to
enable higher abstractions

Elementary Thread pools in
asynch, eventually replaced
with executors

•Ease of programming
Writing correct concurrent
code is hard
Lots of concurrency in modern
HW, more than you imagine

•Portability with the same
natural syntax Not achievable before

•Uncompromising Performance

•Stable memory model

•System level interoperability

•C++ shares threads with other languages

What we
are still
trying to
get

• TM, atomic<shared<T>>, queues and counters
• SIMD, Task Blocks, coroutines, networking
• Distributed and Heterogeneous programming
• Reactive programming

•All the nifty, higher parallel abstractions

•Complete Compatibility between C and C++

•Total isolation from programmer mistakes

Six Blindmen and an elephant

Coverage before C++11 (C++98)
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs,

accelerators, FPGA,
embedded AI processors)

summary tasks that run
independently and
communicate via messages

operations on groups of
things, exploit parallelism in
data and algorithm
structures

avoid races and
synchronizing objects in
shared memory

Dispatch/offload to other
nodes (including
distributed)

examples GUI,background printing,
disk/net access

trees, quicksorts,
compilation

locked data(99%), lock-free
libraries (wizards), atomics
(experts)

Pipelines, reactive
programming, offload,,
target, dispatch

key metrics responsiveness throughput, many core
scalability

race free, lock free Independent forward
progress,, load-shared

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions POSIX threads, win32
threads, OpenCL, vendor
intrinsic

openmp, TBB, PPL, OpenCL,
vendor intrinsic

locks, lock hierarchies,
vendor atomic instructions,
vendor intrinsic

OpenCL, CUDA

Coverage after C++11
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs,

accelerators, FPGA,
embedded AI processors)

summary tasks that run
independently and
communicate via messages

operations on groups of
things, exploit parallelism in
data and algorithm
structures

avoid races and
synchronizing objects in
shared memory

Dispatch/offload to other
nodes (including
distributed)

examples GUI,background printing,
disk/net access

trees, quicksorts,
compilation

locked data(99%), lock-free
libraries (wizards), atomics
(experts)

Pipelines, reactive
programming, offload,,
target, dispatch

key metrics responsiveness throughput, many core
scalability

race free, lock free Independent forward
progress,, load-shared

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions C++11: thread,lambda
function, TLS

C++11: Async, packaged
tasks, promises, futures,
atomics

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term

C++11: lambda

Coverage after C++14
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous

summary tasks that run
independently and
communicate via messages

operations on groups of
things, exploit parallelism in
data and algorithm
structures

avoid races and
synchronizing objects in
shared memory

Dispatch/offload to other
nodes (including
distributed)

examples GUI,background printing,
disk/net access

trees, quicksorts,
compilation

locked data(99%), lock-free
libraries (wizards), atomics
(experts)

Pipelines, reactive
programming, offload,,
target, dispatch

key metrics responsiveness throughput, many core
scalability

race free, lock free Independent forward
progress,, load-shared

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++11: Async, packaged
tasks, promises, futures,
atomics,

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term,

C++ 14:
shared_lock/shared_timed_
mutex, OOTA,
atomic_signal_fence,

C++11: lambda

C++14: none

Coverage after C++17
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs,

accelerators, FPGA,
embedded AI processors)

summary tasks that run
independently and
communicate via messages

operations on groups of
things, exploit parallelism in
data and algorithm
structures

avoid races and
synchronizing objects in
shared memory

Dispatch/offload to other
nodes (including
distributed)

today's abstractions C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++11: Async, packaged
tasks, promises, futures,
atomics,

C++ 17: ParallelSTL, control
false sharing

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term,

C++ 14:
shared_lock/shared_timed_
mutex, OOTA,
atomic_signal_fence,

C++ 17: scoped _lock,
shared_mutex, ordering of
memory models, progress
guarantees, TOE, execution
policies

C++17: , progress
guarantees, TOE, execution
policies

Coverage aiming for C++20
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous/Distributed

today's abstractions C++11: thread,lambda
function, TLS, async

C++ 20: Executors Lite
Jthreads +interrupt _token

C++11: Async, packaged
tasks, promises, futures,
atomics,

C++ 17: ParallelSTL, control
false sharing

C++ 20: Is_ready(),
make_ready_future()
Task blocks
simd<T>, Vec execution
policy, Algorithm un-
sequenced policy
Executors Lite, mdspan

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term,

C++ 14:
shared_lock/shared_timed_
mutex, OOTA,
atomic_signal_fence,

C++ 17: scoped _lock,
shared_mutex, ordering of
memory models, progress
guarantees, TOE, execution
policies

C++20: atomic_ref, Latches
and barriers
atomic<shared_ptr>
Atomics & padding bits
Simplified atomic init
Atomic C/C++ compatibility
Semaphores and waiting
Fixed gaps in memory
model , Improved atomic
flags, Repair memory model

C++17: , progress
guarantees, TOE, execution
policies

C++20: atomic_ref, mdspan,
executors Lite

SYCL / OpenCL /
CUDA / HCC OpenMP / MPI C++ Thread Pool

Boost.Asio /
Networking TS

Unified interface for execution

defer define_task_block dispatch strand<>asynchronous operations

future::the
n

asyncinvoke postparallel algorithms

Current Progress of Executors
• An instruction stream is the

function you want to execute
• An executor is an interface that

describes where and when to
run an instruction stream

• An executor has one or more
execute functions

• An execute function executes
an instruction stream on light
weight execution agents such
as threads, SIMD units or GPU
threads

Current Progress of Executors
• An execution platform is a

target architecture such as
linux x86

• An execution resource is
the hardware abstraction
that is executing the work
such as a thread pool

• An execution context
manages the light weight
execution agents of an
execution resource during
the execution

Coverage beyond C++20: C++23
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous/DIstributed

today's abstractions C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++ 20: Executors Lite
Jthreads +interrupt _token

C++23: coroutines,
networking, asynchronous
algorithm, reactive
programming, EALS, async2

C++11: Async, packaged
tasks, promises, futures,
atomics,

C++ 17: ParallelSTL, control
false sharing

C++ 20: Is_ready(),
make_ready_future()
Task blocks
simd<T>, Vec execution
policy, Algorithm un-
sequenced policy
Executors Lite, mdspan

C++23: new futures,
concurrent vector,
unordered associative
containers, two-way
executors with lazy sender-
receiver models, concurrent
exception handling,

C++11: …
C++ 14: …
C++ 17: …

C++20: atomic_ref, Latches
and barriers
atomic<shared_ptr>
Atomics & padding bits
Simplified atomic init
Atomic C/C++ compatibility
Semaphores and waiting
Fixed gaps in memory
model , Improved atomic
flags , Repair memory
model

C++23: hazard_pointers,
rcu/snapshot, concurrent
queues, counters, upgrade
lock, TM lite, more lock-
free data structures,
asymmetric fences

C++17: , progress
guarantees, TOE, execution
policies

C++20: atomic_ref, mdspan,
executors Lite

C++23: affinity, pipelines,
EALS,
freestanding/embedded
support well specified,
mapreduce, ML/AI, reactive
programming

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

{
auto exec = execution::execution_context{execRes}.executor();

auto affExec = execution::require(exec, execution::bulk,
execution::bulk_execution_affinity.compact);

affExec.bulk_execute([](std::size_t i, shared s) {
func(i);

}, 8, sharedFactory);
}

Act 3

• Where is C++ Standard
now?

• What is Parallelism in C++
11, 14, 17, 20, 23?

• Is there a direction for
C++?

C++
Directions

Group:
P0939

I have a
big idea
for a big
change

• Change gradually building on previous
work

• OR

• Provide better alternative to existing
feature

Many cooks (photos
by Bjarne Stroustrup)

53

I have a
secret to
tell you

Direction Group
created as
response to Call to
Action of

Operating
Principles for
C++ by Heads
of Delegations

C++ in danger of losing
coherency due to
proposals with differ and
contradictory design
philosophies

The Direction Group
direction@lists.isocpp.org

We try to represent USERS: the Interest
of the larger C++ community

WG 21 Direction
Group

What is C++

C++ is a language for defining
and using lightweight

abstractions

C++ supports building resource
constrained applications and

software infrastructure

C++ support large-scale
software development

How do
we want
C++ to
develop?

Improve support for large -scale
dependable software

Improve support for high-level
concurrency models

Simplify language use

Address major sources of
dissatisfaction

Address major sources of error

C++ rests
on two
pillars

• A direct map to hardware (initially
from C)
• Zero-overhead abstraction in
production code (initially from Simula,
where it wasn’t zero-overhead)

Strengthen
two pillars

Better support for modern hardware
(e.g., concurrency, GPUs, FPGAs,
NUMA architectures, distributed
systems, new memory systems)

More expressive, simpler, and safer
abstraction mechanisms (without

added overhead)

4.3
Concrete
Suggestions

• Pattern matching

• Exception and error returns

• Static reflection

• Modern networking

• Modern hardware:

• We need better support for modern hardware, such
as executors/execution

• context, affinity support in C++ leading to
heterogeneous/distributed computing support,

• SIMD/task blocks, more concurrency data structures,
improved atomics/memory model/lock-

• free data structures support. The challenge is to turn
this (incomplete) laundry list into a

• coherent set of facilities and to introduce them in a
manner that leaves each new standard with

• a coherent subset of our ideal.

• Simple graphics and interaction

• Anything from the Priorities for C++20 that didn’t
make C++20

Modern hardware

• We need better support for
modern hardware, such as
executors/execution context,
affinity support in C++ leading to
heterogeneous/distributed
computing support, ...

What have we achieved so far?

Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2->C++20

Atomic, Fences, lockfree, futures, counters, transactions C++11/14/17 atomics, Concurrency TS1->C++20,
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja
P0796 on affinity

Distributed HPX, MPI, UPC++
P0796 on affinity

Caches C++17 false sharing support

Numa Executors, Execution Context, Affinity, P0443->Executor TS
or IS20

TLS EALS, P0772

Exception handling in concurrent environment EH reduction properties
P0797

If you have to remember 3 things

Expose more
parallelism

1
Increase
Locality of
reference

2
Use
Heterogeneous
C++ today

3

• Oh, and
one
more
thing

C++23:
Heterogeneous

Asynchronus
Agents

Concurrent collections Mutable shared state Heterogeneous/DIstributed

today's
abstractions

C++11:
thread,lambda
function, TLS, async

C++14: generic
lambda

C++ 20: Executors
Lite
Jthreads +interrupt
_token

C++23: coroutines,
networking,
asynchronous
algorithm, reactive
programming, EALS,
async2

C++11: Async, packaged tasks,
promises, futures, atomics,

C++ 17: ParallelSTL, control
false sharing

C++ 20: Is_ready(),
make_ready_future()
Task blocks
simd<T>, Vec execution policy,
Algorithm un-sequenced
policy
Executors Lite, mdspan

C++23: new futures,
concurrent vector, unordered
associative containers, two-
way executors with lazy
sender-receiver models,
concurrent exception
handling,

C++11: …
C++ 14: …
C++ 17: …

C++20: atomic_ref,
Latches and barriers
atomic<shared_ptr>
Atomics & padding bits
Simplified atomic init
Atomic C/C++
compatibility
Semaphores and waiting
Fixed gaps in memory
model , Improved
atomic flags , Repair
memory model

C++23: hazard_pointers,
rcu/snapshot,
concurrent queues,
counters, upgrade lock,
TM lite, more lock-free
data structures,
asymmetric fences

C++17: , progress guarantees,
TOE, execution policies

C++20: atomic_ref, mdspan,
executors Lite

C++23: affinity, pipelines, EALS,
freestanding/embedded
support well specified,
mapreduce, ML/AI, reactive
programming

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::begin(v1), nElems, 1);

std::for_each(std::begin(v), std::end(v),
[=](float f) { f * f + f });

Traditional for each uses only one core,
rest of the die is unutilized!

10000
elems

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed across cores!
(mileage may vary, implementation-specific behaviour)

2500
elems

2500
elems

2500
elems

2500
elems

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed across cores!
(mileage may vary, implementation-specific behaviour)

2500
elems

2500
elems

2500
elems

2500
elems

What about this
part?

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(sycl_policy,
std::begin(v1), nElems, 1);

std::for_each(sycl_named_policy
<class KernelName>,

std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed on the GPU cores
(mileage may vary, implementation-specific behaviour)

10000 elems

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(sycl_heter_policy(cpu, gpu, 0.5),
std::begin(v1), nElems, 1);

std::for_each(sycl_heter_policy<class kName>
(cpu, gpu, 0.5),
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed on all cores!
(mileage may vary, implementation-specific behaviour)

5000 elems

1250
elems

1250
elems

1250
elems

1250
elems

Experimental!

Demo Results - Running std::sort
(Running on Intel i7 6600 CPU & Intel HD Graphics 520)

size 2^16 2^17 2^18 2^19

std::seq 0.27031s 0.620068s 0.669628s 1.48918s

std::par 0.259486s 0.478032s 0.444422s 1.83599s

std::unseq 0.24258s 0.413909s 0.456224s 1.01958s

sycl_execution_policy 0.273724s 0.269804s 0.277747s 0.399634s

SYCL Ecosystem
● ComputeCpp -

https://codeplay.com/products/computesuite/computecpp
● triSYCL - https://github.com/triSYCL/triSYCL
● SYCL - http://sycl.tech
● SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL
● VisionCpp - https://github.com/codeplaysoftware/visioncpp
● SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
● TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow
● Eigen http://eigen.tuxfamily.org

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

Eigen Linear Algebra Library
SYCL backend in mainline
Focused on Tensor support, providing

support for machine learning/CNNs
Equivalent coverage to CUDA
Working on optimization for various

hardware architectures (CPU, desktop and
mobile GPUs)

https://bitbucket.org/eigen/eigen/

https://bitbucket.org/eigen/eigen/

TensorFlow
SYCL backend support for all major CNN

operations
Complete coverage for major image

recognition networks
GoogLeNet, Inception-v2, Inception-v3,

ResNet, ….
Ongoing work to reach 100% operator

coverage and optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are
trademarks of Google Inc.

https://github.com/tensorflow/tensorflow

SYCL Ecosystem
• Single-source heterogeneous programming using STANDARD C++

- Use C++ templates and lambda functions for host & device code
- Layered over OpenCL

• Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK …

• More information at http://sycl.tech

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of
device-side kernel source

code and host code

Single-source C++
Programmer Familiarity
Approach also taken by
C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so
code can be easily shared between the two approaches

http://sycl.tech/

Codeplay
Standards

bodies
• HSA Foundation: Chair of software

group, spec editor of runtime and
debugging

• Khronos: chair & spec editor of SYCL.
Contributors to OpenCL, Safety Critical,
Vulkan

• ISO C++: Chair of Low Latency,
Embedded WG; Editor of SG1
Concurrency TS

• EEMBC: members

Research

• Members of EU research consortiums:
PEPPHER, LPGPU, LPGPU2, CARP

• Sponsorship of PhDs and EngDs for
heterogeneous programming: HSA,
FPGAs, ray-tracing

• Collaborations with academics
• Members of HiPEAC

Open source

• HSA LLDB Debugger
• SPIR-V tools
• RenderScript debugger in AOSP
• LLDB for Qualcomm Hexagon
• TensorFlow for OpenCL
• C++ 17 Parallel STL for SYCL
• VisionCpp: C++ performance-portable

programming model for vision

Presentations

• Building an LLVM back-end
• Creating an SPMD Vectorizer for OpenCL

with LLVM
• Challenges of Mixed-Width Vector Code

Gen & Scheduling in LLVM
• C++ on Accelerators: Supporting Single-

Source SYCL and HSA
• LLDB Tutorial: Adding debugger support

for your target

Company

• Based in Edinburgh, Scotland
• 57 staff, mostly engineering
• License and customize technologies for

semiconductor companies
• ComputeAorta and ComputeCpp:

implementations of OpenCL, Vulkan and
SYCL

• 15+ years of experience in
heterogeneous systems tools

Codeplay build the software platforms that deliver massive performance

What our ComputeCpp users say
about us

“We at Google have been working closely
with Luke and his Codeplay colleagues on

this project for almost 12 months now.
Codeplay's contribution to this effort has

been tremendous, so we felt that we
should let them take the lead when it

comes down to communicating updates
related to OpenCL. … we are planning to

merge the work that has been done so
far… we want to put together a

comprehensive test infrastructure”

Benoit Steiner – Google TensorFlow
engineer

“We work with royalty-free SYCL because
it is hardware vendor agnostic, single-

source C++ programming model without
platform specific keywords. This will allow
us to easily work with any heterogeneous

processor solutions using OpenCL to
develop our complex algorithms and

ensure future compatibility”

ONERA

“My team and I are working with
Codeplay's ComputeCpp for almost a year
now and they have resolved every issue
in a timely manner, while demonstrating
that this technology can work with the
most complex C++ template code. I am
happy to say that the combination of

Codeplay's SYCL implementation with our
HPX runtime system has turned out to be

a very capable basis for Building a
Heterogeneous Computing Model for the

C++ Standard using high-level
abstractions.”

Hartmut Kaiser -HPX

It was a great pleasure this week for us,
that Codeplay released the ComputeCpp

project for the wider audience. We've
been waiting for this moment and

keeping our colleagues and students in
constant rally and excitement. We'd like
to build on this opportunity to increase

the awareness of this technology by
providing sample codes and talks to

potential users. We're going to give a
lecture series on modern scientific

programming providing field specific
examples.“

WIGNER Research Centre
for Physics

Further information
• OpenCL https://www.khronos.org/opencl/
• OpenVX https://www.khronos.org/openvx/
• HSA http://www.hsafoundation.com/
• SYCL http://sycl.tech
• OpenCV http://opencv.org/
• Halide http://halide-lang.org/
• VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

Community Edition
Available now for free!

Visit:
computecpp.codeplay.com

• Open source SYCL projects:
• ComputeCpp SDK - Collection of sample code and integration tools
• SYCL ParallelSTL – SYCL based implementation of the parallel algorithms
• VisionCpp – Compile-time embedded DSL for image processing
• Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/

/codeplaysoft@codeplaysoft codeplay.com

Questions ?

	Slide Number 1
	Who am I?
	Slide Number 3
	Slide Number 4
	Codeplay - Connecting AI to Silicon
	3 Act Play
	Slide Number 7
	C++11,14,17“No more Raw Food”
	Parallelism “Use the right abstraction”
	Act 1
	C++ Standard ratification
	C++ is more popular than ever
	ISO C++ Standard
	C++ Std Timeline/status� https://isocpp.org/std/status
	So What is the best feature of C++17
	Priorities for C++ 20
	C++20 if time permits
	C++ 20 Language Features
	More C++20 Language Features
	More C++ 20 Language Features
	C++20 Library Features
	More C++20 library Features
	More C++20 Library Features
	Pre-C++11 projects
	Status after Nov SAN C++ Meeting
	Concepts: compromised design for Abbreviated Function Template
	Status after Nov SAN C++ Meeting
	Status after Nov SAN C++ Meeting
	Act 2
	Slide Number 30
	So Why do we need to standardize concurrency?
	Concurrency Language and Library
	What we got in C++
	What we are still trying to get
	Six Blindmen and an elephant
	Coverage before C++11 (C++98)
	Coverage after C++11
	Coverage after C++14
	Coverage after C++17
	Coverage aiming for C++20
	Slide Number 45
	Current Progress of Executors
	Current Progress of Executors
	Coverage beyond C++20: C++23
	Slide Number 49
	Act 3
	C++ Directions Group: P0939
	I have a big idea for a big change
	Many cooks (photos by Bjarne Stroustrup)
	I have a secret to tell you
	The Direction Group �direction@lists.isocpp.org
	WG 21 Direction Group
	What is C++
	How do we want C++ to develop?
	C++ rests on two pillars
	Strengthen two pillars
	4.3 Concrete Suggestions
	Modern hardware
	What have we achieved so far?
	Use the Proper Abstraction with C++
	If you have to remember 3 things
	Slide Number 66
	C++23: Heterogeneous
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	
	Slide Number 74
	Slide Number 75
	Eigen Linear Algebra Library
	TensorFlow
	SYCL Ecosystem
	Codeplay
	What our ComputeCpp users say about us
	Further information
	Slide Number 82
	Slide Number 83
	Questions ?

