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CUDA Source of Information
 Work CUDA Programming Guide

(Probably the most important and comprehensive resource for C/C++ programmers)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html or the pdf version:

https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf

 CUDA C Best practices Guide

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#abstract

 CUDA Experiments ( CUDA Kernel-Level Experiments and CUDA Source-Level Experiments )

 CUDA Developer Zone:  https://docs.nvidia.com/cuda/index.html#

including code samples: https://developer.nvidia.com/cuda-code-samples 

 Mark Harris blog: https://devblogs.nvidia.com/author/mharris/ ,

https://devblogs.nvidia.com/even-easier-introduction-cuda/

 stackoverflow.com

 and Lot of others . . . 

 Books archive: https://developer.nvidia.com/cuda-books-archive

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#abstract
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#abstract
https://docs.nvidia.com/nsight-visual-studio-edition/Nsight_Visual_Studio_Edition_User_Guide.htm#Analysis/Report/CudaExperiments/Kernel_Level_Experiments.htm%3FTocPath%3DAnalysis%2520Tools%7CCUDA%2520Experiments%7CKernel-Level%2520Experiments%7C_____0
https://docs.nvidia.com/nsight-visual-studio-edition/Nsight_Visual_Studio_Edition_User_Guide.htm#Analysis/Report/CudaExperiments/Source_Level_Experiments.htm%3FTocPath%3DAnalysis%2520Tools%7CCUDA%2520Experiments%7CSource-Level%2520Experiments%7C_____0
https://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-code-samples
https://devblogs.nvidia.com/author/mharris/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://developer.nvidia.com/cuda-books-archive
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CUDA Terminology 1: ILP and Pipelined Processor

 ILP (Instruction-Level Parallelism)

Parallel/Overlapped execution of multiple independent

instructions

 Pipelined Processor

 Device that implement ILP:

 Identify multiple independent instructions

 Execute them in parallel/overlapped manner

 Device that using ILP to hide instructions latency

See great presentation of Sylvain Collange at: 

http://www.irisa.fr/alf/downloads/collange/cours/gpuprog_ufmg_2015/gpu_ufmg_2015_1.pdf

See:

https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf and CUDA Pipe Utilization

http://www.irisa.fr/alf/downloads/collange/cours/gpuprog_ufmg_2015/gpu_ufmg_2015_1.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/analysis/report/cudaexperiments/kernellevel/pipeutilization.htm


CUDA Terminology 2: Basic

 Host: the CPU and its memory

 Device: the GPU and its memory

 SM (Streaming Multiprocessor): Independent Processing Unit. Each device contains several 

SM’s

 Compute Capability (CC): Define the SM version.

Determine the hardware features and the available instructions. Comprises of:

 a major revision: The core architecture

 a minor revision: Specify an incremental improvement over the core architecture

see https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

 Does our device CC is supported by our CUDA SDK?

 The Tesla and Fermi architectures are no longer supported starting with CUDA 7.0 and CUDA 9.0, respectively . .

 We should specify to which CC the nvcc will compile (can compile for multiple CC’s)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities


Nvidia Device Architecture

Architecture Released

in

Compute

Capability

Tesla 2006 1.x

Fermi 2010 2.x

Kepler 2012 3.x

Maxwell 2014 5.x

Pascal 2016 6.x

Volta 2017 7.x

Turing 2018 7.5

See

https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/

https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/


Nvidia Compute Capability

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-

specifications__technical-specifications-per-compute-capability

3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.5

Kepler Maxwell Pascal Volta Turing

192 128 64 128 64

8 64 4 32 4 32

32 32 16 32 16

64K 128K 64K 64K 64K

48KB 112KB 64KB 96KB 64KB 64KB 96KB 64KB 96KB 64KB

16 32 32 32 16

64 64 64 64 32

4 4 2 4 4

Architecture

#fp32 cores

#fp64 cores

Special Function Units

32-bit registers

Max shared Memory

Max blocks per SM

Max warps per SM

# warp schedulers

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications__technical-specifications-per-compute-capability


A CUDA Device Architecture
 Main components of CUDA device:

 Several SM’s (Streaming Multi-Processors)

 GPU Global Memory (residing in the DRAM)

 L2 cache: Shared by all SM’s. Used mainly to cache the Global memory.

Can also cache Local memory(*) 

See:

https://developer.nvidia.com/cuda-gpus

(*): will be described in the following

https://developer.nvidia.com/cuda-gpus


Pascal GP100 architecture (Figure 7) from:

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

PASCAL GP100

Num

SM’s

56
(full: 60)

512-bit 

memory 

controllers

8

L2 cache/

memory

controller

512KB

Total

L2 cache

4MB

GPU 

memory

16GB

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf


CC 6.0 SM is composed of
 Instructions cache

 64 KB Shared Memory

Fermi and Kepler had a 64 KB configurable Shared memory and L1 cache.

From Maxwell, shared memory has a dedicated cache

 L1 / Texture cache
L1 cache is used to cache Local memory but can also serve as a texture cache.

(Global memory normally not cached in L1)

 Two processing blocks. Each one contains:
 Instruction Buffer

 Warps Scheduler

 Dual Dispatch Unit

 Registers

 Pipelined Processors Units

 32 CUDA cores (FP32). can perform one single precision instruction per clock cycle

 16 Double Precision units (FP64)

 8 LDST Units (Load/Store): for Shared/global/local memory accesses

 8 SFU (Special Functions Units)

See: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-6-x

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-6-x


Pascal GP100 SM Unit (Figure 8) from:

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

Pascal SM

(CC 6.0)

FP32

Cores

64

FP64

Cores

32

registers 256KB

Shared

Memory

64KB

Active

Blocks

32

Active

Threads

2048

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf


Device attributes queries
 Getting the CUDA device properties:

cudaDeviceProp prop;

cudaGetDeviceProperties(&prop, deviceIndex);

 Getting specific attribute:

 cudaDeviceGetAttribute ( int* value, cudaDeviceAttr attr, int device )

used to get an information of a specified device. If attr =

 cudaDevAttrMaxThreadsPerBlock: Maximum number of threads per block

 cudaDevAttrMaxSharedMemoryPerBlock: Maximum shared memory size to a thread block in bytes

 cudaDevAttrTotalConstantMemory: Max constant memory available on device in bytes

 cudaDevAttrGlobalL1CacheSupported: return 1 if device supports caching globals in L1 cache, 0 if not

 cudaDevAttrLocalL1CacheSupported: return 1 if device supports caching locals in L1 cache, 0 if not

 cudaDevAttrL2CacheSize: return Size of L2 cache in bytes. 0 if the device doesn't have L2 cache

See: https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g49e2f8c2c0bd6fe264f2fc970912e5cd
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cd08fbcb2d50dbfad988a6203170b10156
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cdcf1490f9974e877131048b1b3eb8bdcc
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cdca216ef679ac7324567d35fb947f3e64
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cdb604005d7e05a02d8456ea88a98df71a
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cdf7b1a72971ff5b5e4f7b8aed3c2402f6
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cd1b0342682d15910022ba3f383a851ad7
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html


CUDA Terminology 3: Kernel
Kernel: function (void only) that launched, usually (*) by the host and 

executed asynchronously (non blocking the host) on the device

 Specified by __global__

 example: 

template<typename T>

__global__ void Add_kernel(int numElements, T* dst, const T* src)

{

const int idx = blockDim.x * blockIdx.x + threadIdx.x;

if (idx < numElements)

dst[idx] += src[idx];

}

 Launch from the host by: Add_kernel<<< gridSize, blockSize, SharedMemSize=0, Stream=0>>> (inside <<< >>> is the execution configuration)

 The kernel code run on all the kernel threads concurrently.

Each thread has built-in variables as:

 blockDim : (uint3) variable contains the size/dimension of the block

 blockIdx : (uint3) variable contains the index of the current block instance within the grid

 threadIdx: (uint3) variable contains the index of the current thread instance within the block

See C/C++ Support:  https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-cplusplus-language-support

(*): to launch kernel from another kernel see dynamic parallelism (CC 3.5 and higher) in:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-dynamic-parallelism

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-cplusplus-language-support
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-dynamic-parallelism


CUDA Terminology 4: Device Function

Device Function: function that run on the device

 Specified by __device__

 Can be called from a kernel or other Device function

 Cannot be called from the host

 example: 

template<typename T>

__device__ T MinMax(T a, T b, bool min_or_max)

{

if (min_or_max)

return (a < b) ? a : b ;

else

return (a > b) ? a : b ;

}

 can return value

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#return-type-deduction

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#return-type-deduction


CUDA Terminology 5: Grid/Block/Warp/Thread

 Thread

 CUDA thread are extremely lightweight compared to CPU threads

 No context switch (resources stay allocated to each thread until it completes its execution) 

 Warp: a group of (32) consecutive threads which execute Single Instruction on Multiple-Data (SIMD) 
concurrently on a single SM. It is called also SIMT (Single Instruction Multiple thread).

Each warp has its own instruction address counter and register state, so can branch and execute 
independently.

 Block: Group of (1/2/3 dimensional) threads, divided to Warps. Threads ID’s 0:31 assigned to the 1st Warp. 
Threads ID’s 32:63 assigned to the 2nd Warp and so on. Executed by a single SM.

 Grid: Group of (1/2/3 dimensional) thread blocks. Can be executed by all the device SM’s.

So:

Kernel is executed by a Grid.

Grid is executed by Blocks.

Blocks are executed by Warps.

Warps are executed by Threads.

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture


CUDA Asynchronous commands

The following CUDA commands are non-blocking the host:

 Kernel launch

 Memory copy from/to the same device

 Memory copy/set with Async suffix (as cudaMemcpyAsync, 

cudaMemsetAsync, cudaMemcpyFromSymbolAsync, …) if

the host memory is pinned (page locked)

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution


From Mark Harris Blog:

https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/

Warning:

Pinned memory should not be 

overused. Excessive use can reduce 

overall system performance!

See:

https://docs.nvidia.com/cuda/cuda-

c-best-practices-

guide/index.html#pinned-memory

https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory


CUDA Terminology 6: CUDA Stream

CUDA Stream: a sequence of kernels or CUDA commands (possibly issued by 
different host threads) that execute in order

 Streams can be used for better device utilization.

For instance: by running concurrently

 Kernel

 cudaMemcpyAsync(DeviceToHost), when the host memory is paged locked

 cudaMemcpyAsync(HostToDevice), when the host memory is paged locked

While each of these operations is performed in a different stream

(and not the Default Stream)

 cudaMemcpyAsync can run concurrently only in different directions

 kernels from different streams can run concurrently only if there are

enough resources on the GPU, otherwise will run interleaved.

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams

 To enable per-thread default streams in CUDA 7 and later, you can either:

 Compile with the nvcc command-line option: --default-stream per-thread

 #define CUDA_API_PER_THREAD_DEFAULT_STREAM before including CUDA headers

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams


CUDA Terminology 7: Default Stream

Default Stream: (or NULL Stream) a single and unique stream that can be 
used by all the host threads.

 Can be used when concurrency is not required

 Will be used by default, if no stream is specified

 Causes implicit synchronization

i.e. When a command issued to the Default Stream, it will not begin

until all previously issued commands in ANY STREAM have completed,

and all the commands in ALL STREAMS issued after will not begin until

the command in the default stream has been completed.

 In other words: two commands from any stream cannot run concurrently if 
the host thread issues any command to the Default Stream between them

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams

https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/ -

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/


Streams Synchronization

 cudaDeviceSynchronize()

blocks the host thread until all preceded commands in all the streams have completed

 cudaStreamSynchronize(stream)

blocks the host thread until all preceded commands in a specified stream have completed

 cudaStreamWaitEvent(stream, event, flags)

All the commands issued to the stream after this call will wait until the event occurs.

 cudaStreamQuery(event)

Query if all preceding commands in a stream have completed

 cudaEventSynchronize(event)

blocks the host thread until a specified event has been recorded

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-explicit-synchronization

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-explicit-synchronization
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CUDA Terminology 8: Latency

 Latency: Num clocks cycles required for a Warp to complete its current instruction

While an arithmetic operation latency is ~10-20, load/store of off-chip memory operation 

latency is ~100-400, depending on the device architecture (compute capability)

For instance: according to Nvidia documentation, the typical latency for CC 3.x is about 11,

which means 44 warps are needed to hide the latency

 Warp instruction

See instructions: https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref

Instruction Performed by

32-bit int/float arithmetic or logic condition ALU’s

64-bit (double precision) arithmetic DP units

Load/Save from/to  global/shared/local memory LSDT units

Trigonometric function (sin, cos,..), 

log, exp, sqrt,..

SPU units

https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref


CUDA Terminology 9: Occupancy

 Occupancy: The ratio of average number of active warps on SM’s to the maximum number of 
active warps supported by the SM

 Theoretical Occupancy

The max occupancy available based on the kernel execution configuration, the resources 

required by the kernel and the CUDA device capabilities.

 Achieved Occupancy

The average of occupancy measured during the kernel execution

 Theoretical Occupancy (for specified CC) is controlled by three factors:

 Block size

 Shared memory size (per block)

 Registers size (per thread)

 Higher occupancy does not always mean higher performance

See:

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiment
s/kernellevel/achievedoccupancy.htm

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm


Compute Theoretical Occupancy: Example

 Suppose Block Size was selected to be: 128 (= 4 warps)

Max num of blocks limited by block size = 64/4 = 16
 Shared Memory per block = 5000 bytes

Max num of blocks limited by shared Memory = 65536/5000 = 13.1 ➔ 13
 Registers Per Thread= 48;   per block= 128*48 = 6144;

Max num of blocks limited by resisters = 65536/6144 = 10.67 ➔ 10
This is the limiting parameter!

So the Theoretical Occupancy is 10 * 4 / 64 = 40 / 64 = 0.625

 Question: What will be the Theoretical Occupancy if 
we will need 10000 bytes shared memory?

Compute Capability 5.0

Max Warps per Multiprocessor 64

Max Thread Blocks per Multiprocessor 32

Registers per Multiprocessor 65536

Shared Memory per Multiprocessor (bytes) 65536



https://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

https://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls


Why Achieved Occupancy < Theoretical?

 Unbalanced workload within blocks (Significant variation in warps execution time)

Fewer active warps at the kernel end - "tail effect"

 Unbalanced workload across blocks (Significant variation in blocks execution time)

The “tail effect” does not occur inside every block, but only at the end of the kernel.

 Too few blocks launched

See: 
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexp
eriments/kernellevel/achievedoccupancy.htm

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm


Warp Scheduler work – 1 (*)
 When a kernel is launched

Block size and the Grid size : are defined by execution configuration

Shared memory size per block      : is defined by kernel code

Registers memory size per thread : is defined by kernel code

 The Compute Work Distributor will assign a blocks to a SM’s as long as 
the SM has sufficient resources for each block as: Shared memory, 
registers and warps. Each Block assigned to one SM and executed 
only on it.

 Unassigned blocks will wait until one block terminate execution and 
exit

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture

(*) The Volta architecture introduces Independent Thread Scheduling among threads in a warp

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture


Warp Scheduler work - 2
 When block terminate execution, the resource manager

releases it resources (shared memory)

 When block is assigned to SM, all its Warps become active,

i.e. assigned registers memory and added to a Warp Scheduler.

 At every clock cycle, each warp scheduler selects one warp from the eligible 
warps (Selected Warp) and issues to it the next one or two instructions.

 A warp scheduler might issue an instruction multiple times to complete all 32 warp 
threads execution. The two primary reasons for this difference 
between Instructions Issued and Instructions Executed are:

 address divergence and bank conflicts on memory operations

 assembly instructions that can only be issued for a half-warp per cycle and thus 
need to be issued twice. (Double floating-point instructions for example)

See:

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiment
s/kernellevel/instructionstatistics.htm

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/instructionstatistics.htm


Warp Scheduler work – 3

 At every instruction issue time, each Warp Scheduler issues one 
instruction for one of its assigned warps that is ready to execute 
(if any) by a prioritized scheduling policy as: (see the reference below)

 Loosely- Round-Robin (LRR)

 Greedy-then-Oldest (GTO)

 prefetch-aware

 memory-aware

 The most common reason a warp is not ready to execute its next 
instruction is that the instruction's input operands are not 
available yet. Other reason in waiting for synchronization point.

 SM is fully utilized when all warp schedulers always have some 
instruction to issue for some warp at every clock cycle - The 
latency is fully hidden.

See: Barrier-Aware Warp Scheduling for Throughput Processors from may, 2016

http://3nity.io/~vj/downloads/publications/liu16ics-baws.pdf


CUDA Terminology 10: Warps in Warp Scheduler

 Eligible Warp: a warp that is ready for execution. i.e.:

 The next instruction was fetched and all its arguments are ready

 Resources are ready: fp32 cores/ fp64 cores/ ldst unit /special function units

 Stalled Warp: a warp that is not ready for execution the next instruction

 Pipeline Busy — The compute resources required by the instruction are not yet available

 Instruction Fetch — The next assembly instruction has not yet been fetched

 Memory Throttle — A large number of pending memory operations prevent further forward progress

 Memory Dependency — LD/ST units are not available or fully utilized, or too many requests already 
issued

 Execution Dependency — An input required by the instruction is not yet available

 Synchronization — The warp is blocked at a _syncthreads() 

Notice that even the previous instruction didn’t completed yet, it doesn’t stall the warp.

The warp will be stalled only when attempting to access an argument not ready yet.

See: 
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/i
ssueefficiency.htm#IssueStallReasons

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/issueefficiency.htm#IssueStallReasons


CUDA Terminology 11: Warps in Warp Scheduler

Active Warp: A warp is defined as active when it is assigned to a 
warp scheduler and its threads start executing until all its threads end 
executing

Num Active Warps = Num Eligible Warps + Num Stalled Warps

 Selected Warp: The warp selected to execute the next instruction 
in the current warp scheduler. The number of selected warps at any 
cycle in SM is <= the number of warp schedulers in the SM.

Warp Divergence: Warp threads may diverge under conditional 
branch, so execute different paths. In this case the warp execute each 
branch path while disabling the threads that are not taking part in that 
path.

See: 
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexp
eriments/kernellevel/issueefficiency.htm

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/issueefficiency.htm


Pascal GP100 architecture (page 10) from:

https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf


Full Utilization = Full Hiding Latency

CUDA Device is an Hiding Latency Machine

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf
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CUDA Device Memory Types

See

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#device-memory-spaces

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#device-memory-spaces


CUDA Terminology 12: Global Memory

 Global Memory: Is a memory that resides in DRAM (Device Random Access Memory).

 has a high latency access – 100s of clock cycles. Much slower than shared memory.

 Global memory and is accessed via 32/64/128-byte memory transactions.

 When a warp executes an instruction that accesses global memory (LD or ST instructions),

it coalesces the memory accesses of the threads within the warp into one or more of these

memory transactions depending on the size of the word accessed by each thread.

If word size is 1/2/4 bytes the memory transaction will be 32/64/128 bytes correspondingly.

 A L1 cache line is 128 bytes and maps to a 128 byte aligned segment in device memory.

Memory accesses cached by L1 and L2 are serviced with 128-byte memory transactions

 A L2 cache line is 32 bytes and maps to a   32 byte aligned segment in device memory.

Memory accesses cached by L2 only are serviced with 32-byte memory transactions.

 Global memory accesses can be configured at compile time to be cached in L1 and L2 caches (Cached 
Loads) or in L2 only (Uncached Loads).

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/s
ourcelevel/memorytransactions.htm

https://docs.nvidia.com/gameworks/index.html#developertools/desktop/nsight/analysis/report/cudaexp
eriments/kernellevel/memorystatisticsglobal.htm

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm
https://docs.nvidia.com/gameworks/index.html#developertools/desktop/nsight/analysis/report/cudaexperiments/kernellevel/memorystatisticsglobal.htm


CUDA Terminology 13: Coalesced Access

 Global Memory Coalesced Access

Occurs when all the threads in a warp execute a load instruction

such that they access aligned and consecutive memory locations.

 When the warp access to Global Memory is coalesced, the number of 

memory transaction is minimized

See:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses


CUDA Terminology 14: Constant Memory

 The constant memory space resides in device memory and is cached in 

the constant cache.

 Constant memory can be access from all kernels as read-only data

 Must be set from the host prior to launch kernel

 Constant memory size is 64KB for all Compute Capabilities (1.x to 7.x)

while the cache working set is 8KB (4KB only for CC 6.0)

 Since the constant memory size is much smaller than the global memory 

and it is cached, the average latency is much smaller than global 

memory access.

See:

https://docs.nvidia.com/cuda/cda-c-programming-guide/index.html#device-memory-accesses

https://docs.nvidia.com/cuda/cda-c-programming-guide/index.html#device-memory-accesses


CUDA Terminology 15: Local Memory & Register Spilling 

 Local Memory scope is local to the thread, as registers

 The local memory space resides in device memory, so have the same high 
latency and low bandwidth as global memory

 Automatic variables that the compiler is likely to place in local memory are:

 Arrays not indexed with constant quantities

 Large structures or arrays

 Any variable if the kernel uses more registers than available

(Register Spilling).

 Local memory is organized such that consecutive 32-bit words are accessed 
by consecutive thread IDs, so accesses are therefore fully coalesced as long 
as all threads in a warp access the same relative address

See:

https://docs.nvidia.com/cuda/cda-c-programming-guide/index.html#device-memory-accesses

https://docs.nvidia.com/cuda/cda-c-programming-guide/index.html#device-memory-accesses


CUDA Terminology 16: Shared Memory and Bank Conflict 

 Shared memory is divided into equally-sized memory modules, called banks.

There are 32 memory banks in all advanced devices (Compute capability 2.x to 6.x)

 Successive 32-bit words are assigned to successive banks. Each bank can service one address per clock cycle. 

 Memory read/write made of n addresses in n distinct banks can be serviced simultaneously

 If two different addresses of shared memory request fall in the same memory bank,

there is a bank conflict and the access will be serialized.

 Shared memory is ~ as fast as registers as long as there are no bank conflicts
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Shared Memory Bank Conflict: Example
 A [32 x 32] image square tile will be defined as a static shared memory

__shared__ float tile[32][32];

 We shall mark each word in the shared memory with the bank index it get a service from

 If consecutive threads will access consecutive words in a shared memory row, it will be served concurrently

 But what will happened if consecutive threads will access consecutive words in a shared memory column?
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Handling Shared Memory Bank Conflict: 1 Padding

 A [32 x 32] image tile will be defined as a block static shared memory

__shared__ float tile[32][32 + 1];
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Using Dynamic Shared Memory
template<typename T>

__global__ void Somekernel(. . .)

{

extern __shared__ T sharedMemory[];

// 1. Copy from Global memory to Shared Memory

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .

__syncthreads();

// 2. Processing, using the Shared Memory

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .

// 3. Copy from the Shared Memory to the Global Memory

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .

}

Somekernel<float><<< gridSize, blockSize, sharedMemSize, stream>>>(. . .);



CUDA Terminology 17: Uniform Memory

 Managed memory that is shared between the CPU and GPU, Introduced in CUDA 6.0 (2013)

 Automatically migrates allocated data in between host and device,

So, cudaMemcpy (DeviceToHost and HostToDevice) are not necessary

 Biggest advantage: Code Simplification

See:

https://devblogs.nvidia.com/unified-memory-in-cuda-6/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd


1.CUDA Overview & Basic Terminology

2.CUDA Execution Model

3.CUDA Memory Model

4.Starting CUDA Optimization



Staring CUDA Optimization (1)

 Prefer use of Shared Memory over Global Memory wherever applicable

 Try to avoid Global memory uncoalesced access

 Try to avoid Shared Memory bank conflicts

 Use Constant Memory whenever global memory used as read-only inside kernel  

 Avoid unbalanced workload (between warps, between blocks)

 Try to schedule as long as possible kernels queue w/o host sync in between

 If the device is shared between applications, don’t use the default stream

 Try to achieve the highest occupancy available as long as you don’t hit any 

resource bound limit

 For frequent H2D and D2H cudaMemcpy, consider use of Host pinned memory



Staring CUDA Optimization (2)

 Minimize using of barriers inside device code.

 Minimize or avoid using cudaDeviceSynchronize (heavy hammer)

 Consider use of #pragma unroll before loops with size known at compile time

 Declare read-only (and unaliased) parameters as const (and __restrict__)

 Block Size of 128 or 256 is usually the best choice. Avoid too big block size

 Analyze your code with Nvidia Tools

 nvprof, nvvp: Command Line Profiler and Visual Profiler

(Will be Deprecated in future release)

 Nsight: The most powerful tool for profiling and debugging CUDA

Can be used for various profiling issues as:

 Finding the most common reasons for stalled warps (if there are too many)

 Finding the level of resources utilization

 . . . .    See: https://www.nvidia.com/object/nsight.html

https://www.nvidia.com/object/nsight.html


NVIDIA Nsight



Examine the assembly code
Use cuobjdump utility (in every CUDA toolkit)

https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#cuobjdump

 See what’s going on behind the scenes

 Verify whether Local Memory is used within our kernel code

 Get PTX code: cuobjdump myBin.exe[.dll] –ptx > myBin.ptx

 Convert host binary file to a virtual machine (or pseudo-assembly) language for Parallel Thread Execution (PTX)

 Provide a machine-independent ISA (Instruction Set architecture) for multiple GPU  generations as:

 ld.global / st.global : are global memory  load/store commands

 ld.local / st.local : are local   memory  load/store commands

 ld.shared/ st.shared : are shared memory load/store commands

 ld.const : are constant memory load commands

 ld.param : are load kernel or function parameters

See:

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

https://docs.nvidia.com/cuda/pdf/ptx_isa_6.0.pdf

 Get Machine assembly code: cuobjdump myBin.exe[.dll] –sass

see https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref

https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#cuobjdump
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/pdf/ptx_isa_6.0.pdf
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref

