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Intro



Agenda

• Today we'll learn about coroutines
• Coroutines are a new tool for async operations

• It's been published as a TS in 2017-12-05

• Updated a few times since then

• Considered to be merged into C++20

• We'll focus on the user side

• Non-agenda items:
• How to write a library type for using coroutines

• How the compiler transforms our code

• (See the links in the references for this kind of info)



Playground rules / assumptions

• I assume you know about:
• threads and multi-threading environment,

• data races (race conditions), and

• the importance of synchronization tools

• Please ask questions



Motivation



std::future - background

• Currently, the best existing tool in C++ for passing a value from one thread
to another
• And it doesn't say much

• In short:
• std::future is the reader end
• Can be created from std::promise, which is the writer end
• They share a shared state that can hold a value or an exception (both coming from

the std::promise side)
• It's possible to wait on the std::future, to check if it's ready and of course to get

the value (or exception) from it
• There are tools, std::package_task and std::async, to wrap around an

existing function and insert the returned value (or the thrown exception) into a
shared state that can be read from an std::future



int divide(int dividend, int divisor) {

if (divisor == 0)

throw std::range_error("div by zero");

return dividend / divisor;

}

void f() {

std::future<int> answer = divide(126, 3);

std::async(std::launch::async, divide, 126, 3); 

// do a lot of other things while the

// computation is done in the background

assert(answer.get() == 42);

}

Example



Two async operations

void g() {

std::future<int> answer1 =

std::async(std::launch::async,

divide, 126, 3);

std::future<int> answer2 =

std::async(std::launch::async,

divide, 168, 4);

// ...

assert(answer1.get() == answer2.get());

}

• Life is good



Two depended async operations

• (From here on we assume divide is inherently async and returns std::future<int>)

void h() {

auto answer1 = divide(168, 2);

auto answer2 = divide(answer1.get(), 2);

// ...

assert(answer2.get() == 42);

}

• Oops, now it waits for answer1 to be ready before starting the next async operation

• We can create an overload of divide() that takes a std::future<int>
• but where is the fun in it?

• Seriously, what about std::future<short>?



Two depended async operations – solution

void h() {
auto answer = std::async([] {

auto ans = divide(168, 2);
return divide(ans.get(), 2);

});
// ...
assert(answer.get() == 42);

}
• It works, but costs us an additional thread!
• This thread is just sitting there, waiting to pass the value around



Proposed std::future::then

• Adds the notion of “continuation”

• We can attach the next async operation to the future to run when it’s ready

void h() {

auto answer = divide(168, 2).then([](auto ans) {

return divide(ans.get(), 2);

});

// ...

assert(answer.get() == 42);

}

• Now it may even reuse the first thread

• But there are a lot of issues around .then() (see P0701)

• And it gets complicated and uglier with more complex cases

http://wg21.link/P0701


Conclusion so far

• We need better tools for handling concurrency



Coroutines TS



TS

• TS = Technical Specification

• “Feature branch” of the standard, things that can be changed drastically,
including breaking compatibility, changing or removing functionality or
maybe not “merged” to IS (International Standard) at all

• Not mandatory to implement to be standard compliant

• But the whole point is with the hope that implementation will start appear,
users will start using it in their use-cases and feedback from the field will
start gathering up

• Library headers are under experimental directory and names are inside
std::experimental namespace, but it doesn’t say anything about the
quality of the implementation



Coroutines TS

• Originally published in 2017-12-05
• But implementation started while ago
• MSVC (VS)

• VS2015 (or even VS2013 with Nov. 2013 CTP) – pre-TS experimental implementation
• VS2017 – TS Compliant implementation (e.g. adding co_ prefix) 
• Just add /await to the compiler flags

• Clang
• Since clang 5
• Use -fcoroutines-ts -stdlib=libc++

• gcc
• Not yet (as of Sep. 2018)

• The relevant include is <experimental/coroutine>



Two depended async operations –
coroutines-based solution
void h() {

auto answer = []() -> future<int> {

auto ans = co_await divide(168, 2);

co_return co_await divide(ans, 2);

}();

// ...

assert(answer.get() == 42);

}

• (Assuming that this future<T> is usable for coroutines (Awaitable))



So what happens there?

• The function starts to run until it encounters the first co_await
• Which means it also started the async divide() call which returned future<int>

• Then, it’s suspended and the caller can continue to run (or suspend or wait)

• When the future<int> returned by divide() is ready, it (possibly) resumes
the coroutine running, which extracts the result from the future<int> into ans

• Then it calls the second divide() with this result…

• …and is suspended again on the new future<int> returned from this second
call

• Eventually, when the second divide() returns, it extracts the result (which is
part of what co_await does)…

• …and stores it (with co_return) in the future<int> it returned in the original
invocation, where the caller can get the result from



What we have seen?

• 2 new keywords: co_await and co_return
• We’ll see a third one later

• co_await is usable on Awaitable types
• For our discussion, it tautologically means “types that support using co_await on them”

• co_return knows how to pass a result into an appropriate Promise type
• (It’s not exactly like the std::promise we already know, but is close enough for our

discussion)

• Any usage of any of these keywords makes the function a coroutine

• The compiler applies well-defined transformations on such a function, mainly
around the enter/exit and with each occurrence of these co_ keywords

• The semantics of the coroutine behavior is controller by the library type it
returns!



Compiler + Library = WIN

• The compiler gives only a “low-level API”

• It’s almost unusable directly

• Higher-level API and semantics are defined by library writers

• We simply use these library types as suits our needs

• This separation between compiler work and library work enables 
wide variety of usages and semantics
• Instead of baking a few specific semantics and use-cases into the language



Common use-cases

• There are operations that are async already, e.g. I/O (file or network)
interface supplied by the OS, which are found at the end of the call
stack

• The call stack starts with a thread, it can be std::thread,
std::async or even the main thread itself, to wait for the chain of
the async operations to complete

• In the middle, now we have much simpler (and usually more efficient)
code, using coroutines



How to write a coroutine?

• Use a coroutine type as the return type (even if it doesn’t return anything)

• Use co_await to wait on lengthy operations inside it

• Use co_return to return the result (if any)

• Or just throw on error

• Beware the life-time of the parameters!
• By-value parameters are copied (except of some optimization cases) into the
coroutine frame, which is controlled by the return type (or something related to it)

• Pass by-ref only if you sure about it!

• (The same as with any concurrency tool)

• Note that co_await may continue immediately if the result is ready



cppcoro
The Freedom to Choose



cppcoro

• The poster boy of what libraries can do with coroutines

• task<T> – lazily executed task that returns T (void by default)
• Lazily executed means that it starts execution only when the task is awaited

• shared_task<T> – a task<T> that can be copied and awaited in 
multiple places

• Previously there were (eager) task<T> and lazy_task<T>, but the
eager version was removed for safety and performance reasons

• cppcoro documentation states “[…] the only way to start the first/top-
level task” is to use a thread (possibly the current one) to wait on it:
auto res = sync_wait(foo());



cppcoro – more awaitable types

• single_consumer_event
• manual-reset event that supports awaiting

• single_consumer_async_auto_reset_event
• the auto-reset version

• async_manual_reset_event
• the variation that allows multiple waiting coroutines

• More…
• (E.g. tools for file I/O)



Generators



Generators

• Very different use-case, also included in coroutines TS

• What if we need a function to generate more than a single value?

• It’s possible to (co_)return a container with all the values, but what if
we want to generate them one at a time? What if we don’t know right
ahead how many will be needed?

• This is where generators are coming

• And the promised third keyword: co_yield



Simple generator example

cppcoro::generator<std::uint64_t> fibonacci() {

std::uint64_t a = 0, b = 1;

while (true) {

co_yield b;

auto tmp = a; a = b; b += tmp;

}

}

void usage() {

for (auto i : fibonacci()) {

if (i > 1'000'000) break;

std::cout << i << std::endl;

}

}

(Based on cppcoro documentation)



Combining co_await and co_yield

cppcoro::async_generator<int> ticker(int count, threadpool& tp) {

for (int i = 0; i < count; ++i) {

co_await tp.delay(std::chrono::seconds(1));

co_yield i;

}

}

cppcoro::task<> consumer(threadpool& tp) {

auto sequence = ticker(10, tp);

for co_await(std::uint32_t i : sequence) {

std::cout << "Tick " << i << std::endl;

}

}

(Based on cppcoro documentation)



cppcoro – generator types

• As we saw, there are:

• generator<T> – to produce values lazily and synchronously
• It isn’t possible to co_await in a function that returns it! 

• async_generator<T> – similarly but asynchronously
• co_await is possible inside the generator function and on the generator

itself (actually, on its iterator operations)

• Additionally, it includes recursive_generator<T>
• Like generator<T> but useful when the generator returns results (also)

from another generator called inside



How to write a generator coroutine?

• Use an appropriate generator type as a return type

• Have a loop (possibly endless one) inside, probably

• Use co_yield to return the generated value(s)

• Use range-based for loop (possibly with co_await) to consume the generated values
• Or use iterators directly, as

for co_await(declaration : range_init) statement
• is equivalent to

auto && __range = range_init;
auto __begin = co_await begin_expr;
auto __end = end_expr;
for ( ; __begin != __end; co_await ++__begin) {

declaration = *__begin;
statement

}

• (and for regular generator you don’t even need co_await, it’s all encapsulated in the begin() and
++operator() methods)



Bonus Sections
Interesting/Amusing Usages



Qt events (signals and slots) with coroutines 

• Instead of:
bool got_first_point{ false }; QPointF first_point;
QObject::connect(&w, &MyWidget::click, [&](QPointF p) {

if (got_first_point) {
got_first_point = false; w.setLine(first_point, p);

} else {
got_first_point = true; first_point = p;

}
});

• Use something as simple as:
QPointF first_point  = co_await make_awaitable_signal(&w, &MyWidget::click);
QPointF second_point = co_await make_awaitable_signal(&w, &MyWidget::click);
w.setLine(first_point, second_point);

• (Link in the references)



Using std::optional<T> with co_await

• It’s possible to write the needed machinery to enable co_await to take the value out of an 
std::optional<T> or return std::nullopt if it’s empty
std::optional<Point> parse_point() {

co_await parse_lit('(');
auto x = co_await parse_int();
co_await parse_lit(',');
auto y = co_await parse_int();
co_await parse_lit(')');
co_return Point{ x, y };

}

• Instead of a code full with if-not-return-nullopt conditions

• (Link in the references)

• Actually, there is a better, more general, solution proposed
• P0798 – Monadic operations for std::optional (e.g. and_then(), or_else())

• And either way will be even better usable with things like expected<T,E> (P0323)

https://wg21.link/P0798
https://wg21.link/P0323


Possible Radical Changes



Core Coroutines proposal

• Not everyone likes the current state of coroutines

• Core Coroutines proposal (P1063) suggested using an operator
instead of co_await

• The suggested operator is [<-]
• (It also suggests as an extension to add [->] operator too)

• Andrew Pardoe said (on reddit) that he suggested co_co_await instead

• It also radically changes the “compiler API”

• Presented in Rapperswil meeting (last June)

• But the concepts are still the same

https://wg21.link/P1063


Summary && References



Summary

• We saw today a new way to handle concurrency

• It simplifies a lot many use-cases

• It has a lot of possible performance improvements

• It’s already available to try it or even use



References

• https://blogs.msdn.microsoft.com/vcblog/category/coroutine
• a few interesting blog posts on various usages of coroutines

• https://github.com/lewissbaker/cppcoro
• rich library with many types for using with coroutines

• https://lewissbaker.github.io/
• in-depth technical (but easy to follow) explanation of the mechanisms and interfaces defined in the TS and used by the 

library writers to interact with the compiler, by the author of cppcoro library

• http://jefftrull.github.io/qt/c++/coroutines/2018/07/21/coroutines-and-qt.html
• using co_await with Qt signals

• https://www.reddit.com/r/cpp/comments/6ly4rz/it_had_to_be_done_abusing_co_await_for_optionals/
• using co_await on std::optional<T>

• https://wg21.link/N4402
• Resumable Functions (revision 4) - includes rational, explaining various terms etc.

• https://wg21.link/N4760
• Latest TS draft (2018-06-24)
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