Contributing to the
C++ Standard

Starter’s guide

mailto:dan@soundradix.com

Nice to Meet You

Dan Raviv, co-founder and C++ programmer at Sound
Radix

Presented my proposal “Add shift to <algorithm>" at
last ISO meeting in Rapperswil, Switzerland - accepted
into C++20! :-)

Share the experience to help anyone thinking about
contributing

Still new to this myself

Goal

Know what you have to do to get your
great idea into your favorite compiler

Background

The C++ Standard is designed-by-committee: WG21
under ISO

This is where the evolution path of C++ is decided!

~3 week-long meetings a year, at least one outside U.S.
Open to everyone, but be prepared...

4 major groups: language/library, design/wording

Extra domain-specific Study Groups: Concurrency,
Tooling and more

Background

Proposals are considered by the committee throughout the
week by the various groups.

For example, library additions go through LEWG, then LWG.
When relevant also through Study Groups

Final decisions about accepted/rejected proposals are made
by official WG21 members: paying members, as well as
representatives of “National Bodies” (countries)

“But* most of the voting is non-formal and done in the work
meetings throughout the week. Knowledgable attendees
have a lot of influence on the future of C++.

Requirements

Be an expert®
Love C++
Hate C++ (a little)

Be prepared to invest time

Overview

|deal
Experiment

Gather feedback

Write a proposal
Submit and present your proposal

Profit! (for the community)

ldeal

Amazing new class/function/library feature
Revolutionary language addition
...or more commonly, just an incremental improvement

Language changes = higher bar. Not recommended as a
first proposal.

(A Good) Idea!

Born of your work

Clearly motivated and solves a real problem
e |sn’t solved/handled already
Be, or prepare to become a subject matter expert

Aligned with C++ principles

(A Good) Idea!

(Preferably) doesn’t break backwards compatibility
Teachabillity

Clearly belongs in the standard

Not too big, unless you

e really know what you’re doing

e have the time to invest

Experiment

Dollars to donuts you will need to experiment in code to
gather interest / prove your idea’s merits / find issues /
write your proposal

Wandbox or similar for simple demonstrations
Public git repo for library features

Language changes - harder. | have no personal
experience. Experimenting on paper would probably be
fine for most proposals

Gather Feedback

e Gather feedback at the std-proposals forum once you
have something you’re comfortable presenting

e |terative process - starting from a processed idea,
followed by a first proposal draft, and followed by
refinements based on feedback and your research

e Get feedback from your C++ programming friends and
colleagues. People are usually curious about proposals by
personal contacts

Write a Proposal

Introduction

Motivation and Scope
Impact On The Standard
Design Decisions

Open Issues

Proposed Wording
Revision History

Acknowledgements

Example

Add shift to <algorithm>

l. Introduction

This paper proposes adding shift algorithms to the C++ STL which move elements forward or
backward in a range of elements.

Il. Motivation and Scope

Shifting elements forward or backward in a range is a basic operation which the STL should
allow performing easily. An important use case 1s time series analysis algorithms used in
scientific and financial applications.

The scope of the proposal is adding the following function templates to <algorithm>:

template<class ForwardIteratcr>
constexpr ForwardIiterator shift left(
ForwardIterator first, ForwardIterator last,
typename iterator tralts<ForwardIterator>::difference type n
) ;
template<class ExecutionPolicy, class Forwardlterator>
ForwardIterator shift left|
ExecutionPolicyv&é exec, ForwardIterator first, ForwardIterator last,
typename iterator traits<ForwardIterator>::difference type n
)}
template<class l'orwardlteratocr>
ForwardTterator shift right(
ForwardIterator f[irst, ForwardIterator last,
typename iterator traits<ForwardIterator>::difference type n
) ;
template<class ExecutionPolicy, class ForwardTterator>
ForwardIterator shift right(
ExecuticonPolicvas exec, ForwardIterator first, Forwardlteratcr last,
typename iterator traits<ForwardIterator>::difference type n

)

A sample implementation which uses std: smove to implement shift left for forward
iterators and std: :move_ backward to implement shift right for bidirectional iterators
can be found in https://github.comvdanra/shift proposal, though it’s possible more efficient
implementations could be made, since elements are guaranteed to be moved within the same
range, not between two different ranges. The sample implementation also implements a non-

trivial algorithm for shift right of forward, non-bidirectional iterators,

IV. Impact On the Standard

The only impact on the standard 1s adding the proposed function templates to <algorithm>.

V. Design Decisions

[)shift left and shift right are provided as separate function templates instead of
just a single shift function template to maximize performance and minimize compiled code
size. Since shifting left and shifting right may have significantly different implementations (as 1s
the case in the sample implementation), implementing both shift directions in a single shift

function template would both require extra conditional logic and inline less easily than the
specific direction shifts.

Given that both shift left and shift right are provided, it would still be possible to
provide a convenience shift function as well, but it seems redundant.

2) shift left should return an iterator to the new end of the shifted range. The beginning of
the shifted range would always be equal to the beginning of the range before the shift, so there is
no need to also return an iterator to the beginning of the shifted range. (This 1s similar to how
std: :move only returns an iterator to the end of the moved range).

Similarly, shift right should return an iterator to the new beginning of the shifted range.

- In [alg.modifying.operations], after [alg.shuffle], add a new [alg.shift] section:

28.6.77 Shift [alg.shift]

template<class ForwardIterator>
constexpr ForwardIterator shift left(
ForwardIterator first, ForwardIterator last,
typename iterator traits<ForwardIterator>::difference type n

) i

template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator shift left(
ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
typename iterator traits<ForwardIterator>::difference type n

1 Requires: The type of *first shall satisfy the MoveAssignable requirements.
2 Effects:If n <= 0 orn >= last - first, does nothing. Otherwise, moves the element from

position first + n + i into position first + i for each non-negative integer i < (last -
first) - n.Inthe first overload case, does so in order starting from i = 0 and proceedingto i =
(last - first) - n - 1.

3 Returns: first + (last — first) — nifnis positiveandn < last — first, otherwise first
if n is positive, otherwise last.
4 Complexity: At most (last — first) — n assignments.

Fine to make your own

lll. Possible Objections and Responses

1) Objection: Shifting can be done by using std: :move (in <algorithm>).

Response: Which of std: :move or std: :move backward must be used depends on the
shift direction, which is error-prone. It also makes for less readable code: consider

std::shift right(v.begin(), v.end(), 3);
V5.
std: :move backward(v.begin(), v.end() - 3, v.end());

In addition, shift right and shift left may be implemented more efficiently than
std: :move and std: :move backward, since elements are guaranteed to be moved within
the same range, not between two different ranges.

Also, ranges of forward, non-bidirectional iterators cannot be shifted right using either
std: :move or std: :move backward. Such ranges are possible to shift right, though, in

O(N) time and constant space, as shown 1n the sample implementation.

2) Objection: Instead of shifting a range, you can use a circular buffer.

Audience

Experts + other comments on std-proposals
Relevant experts in the standards committee
The most relevant people will read your proposal

But in both cases a larger audience won’t read your
proposal and will expect you to describe it to them -
Just as important!

Audience

 The written proposal is also a great tool for yourself!

Proof that you have explored the design space and
came up with the best solution.

Everything that can be challenged about your proposal
- will be challenged. Might as well cover the relevant
Issues In the proposal.

More easily solicit useful feedback from those who do
read it

Allows someone else to present on your behalf.

Useful feedback and more!

danra / shift_proposal

<> Code Issues 0 Pull requests 0 Projects 0 Insights

Massage algorithm requirements: Browse files

* Relax shift_right to allow forward iterators.

< Remove requirement that n is non-negative (negative shift counts have no effect)
Don't explode when the shift count is >= the size of the range.
Use separate overloads to optionally fill the emptied elements

Relax the requirement that the filler must have the range's value type.
' master (#1)

) CaseyCarter committed on Aug 20, 2017 1 parent 7415ddd commit 3cd185b8c7f@4d4a5b5aabdb7bff8c425df6F9b6

Submit Your Proposal

Ask for an official number for your proposal from the
WG21 vice-chair, Hal Finkel, hfinkel at anl.gov

Use DxxxxRn for your proposal drafts on forums etc.,
then PxxxxRn for your final proposal which you send to
the vice-chair

List the committee groups which should receive and
discuss the proposal

Be aware of submission deadlines - currently the Monday
three weeks after the start of each meeting

http://anl.gov

Example

Document number: PO769R2
Date: 2018, June. 6
Author: Dan Raviv <dan.raviv@gmail.com>

Audience: LWG

Add shift to <algorithm>

Present Your proposal

e [wo options:

e Attend the meeting and present your own proposal

e (Get someone to present your proposal - preferably

someone who has submitted feedback and thinks it’s a
good one.

Present Your Proposal

e IMHO the second option, while offered by WG21, is much worse,
unfortunately.

e The pitch usually won’t be as good, both content- and personal-wise.
Most importantly, you won’t be there to respond to challenges to the
proposal

* The responses during discussion, written down by note-takers, don’t tell
the whole story

 Only do it if you really have no way to attend a meeting. It’s better to
delay your proposal for a meeting you can attend.

e Mitigated somewhat if there are other people with invested interest in
your written proposal, and more so if you co-write the proposal with
someone who does attend.

Presenting to LEWG

e Present the idea, your design decisions and the
considered alternatives and issues

e Your design will be challenged (“grilled”) - be prepared!

e Either consensus to advance to LWG, consensus to come
back with revisions following the feedback, or a straw-poll

Presenting to LWG

By this time the design was approved

95% of the time, only the Standard Wording section of the
written proposal is considered.

In few cases implementation limitations / obscure issues
which appear to have been missed come up, and the
proposal might be sent back to LEWG

After presenting, you will get feedback on the wording, need

to revise and then come back with the revision - if you don’t

attend meetings regularly, try to coordinate your presentation
at the start of the week so you have time for this.

Possibly Fall...

* Some points where your proposal may fail:

Your idea might not gather enough interest.

Even if your idea is good you/your advocate may not pitch your proposal well.
Even if your pitch is good the committee members might not be interested, or
be opposed to the proposal due to its drawbacks / impact on the existing

Standard.

Even if an LEWG session forum supports your proposal and gives you feedback,
the next session’s forum where you present a revised edition might be opposed.

You might just give up in the middle because the entire process takes a lot of
time and work.

e Did | mention you need to love C++ to do this? :)

...0r Succeed!

e Deepen your knowledge of C++ through the process
e Have discussions with and connect with top experts

e Make everyone’s life a little better... including your own!

More Information

e https://isocpp.org/std

e http://open-std.org/jtc1/sc22/wg21/docs/papers/2012/
n3370.html (a bit dated)

e http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2018/

https://isocpp.org/std
http://open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3370.html
http://open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3370.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/

Special Thanks

e Casey Carter

e Walter E. Brown

=t/ !i
PO | / |

Questions?

