
1

Parallel Computing

Strategies and Implications

Dori Exterman
CTO IncrediBuild

Multi-process vs. multi-threaded

Multi-threaded vs. Multi-Process

Considerations for making your choice

Review common market use cases

Compare a specific use-case

Scalability

Summary and Q&A

Increase in clock speed, allowing software to
automatically run faster, no longer oblige to Moore’s law

Chip manufacturers keep Moore’s law by increasing the
number of CPUs

Software has to be written to take advantage of all the
multi-processors.

Instead of doing everything in a linear fashion,
programmers need to ensure applications are designed for
parallel tasking.

Time to market

Future product directions

Product’s maintainability

Product’s complexity

Easy and fast to communicate and share data

between threads (especially read-only data).

Easy to communicate with parent process.

Beneficial for large datasets that can’t be divided

to sub sets.

Supported by many libraries.

One thread crashes → the entire process crashes

Multi-threaded apps are hard to debug

Writing to shared data requires (difficult to maintain) locks

Too many threads → too much time in context-switching.

Not scalable to other machines / public cloud

Includes multi-threaded by definition.

Process crash won’t harm other processes.

Much easier to debug

Encapsulated – easier to manage for large teams

Scalable – distributed computing \ public cloud

More memory can be consumed

Custom development required in order to

communicate between processes

Requires special mechanism to share memory

data between processes

Limited “process-safe” libraries

Parallel parts need to sync data?

Data sets size

Ease of development

Scaling - Compute time and throughput

Easier in multi-threaded

Easier to debug in multi-threaded

In multi-process, will require custom development

Many mechanisms exists both for multi-process and

multi-threaded

Pre-made libraries for MT (multi-threaded)

MP - Easier debug/maintenance/code understanding /

less bugs will be introduced with new commits

MP - Can be developed and maintained by

less experienced developers

MP - Requires developer to maintain encapsulation

MP - Bugs are less complicated to solve when MT is not involved

How many tasks do I have to execute in parallel –

dozens /millions

How many tasks will my product need to support in the

future?

How much time will each task take? Milliseconds or minutes?

How much memory will each task require?

How large is the data that each task requires?

How complex is each task’s code?

Is my system real-time?

Would the product benefit from scalability?

Business wise - scalability as a service?

Offloading

Do my tasks require special hardware?

Will my tasks perform better with specific hardware?

Connection to a database

• Simple scenarios

• Real-time performance

• Long initialization time with short computation

time

• Communication, synchs and states

• Only a few highly intensive tasks

• Multiple, encapsulated modules

• Tasks may require much memory

• Limited synchronization required

• Large application \ large team

• Scaling \ High-throughput

• Tasks are complex and prawned to errors

Parallel Computing

The High-Throughput Challenge

Maven vs Make build tools

• Popular tools

• Many tasks

• Tasks are atomic

• Minimal communication

• Small dataset

• Scalable

• Multi-threaded code was only added recently:

• Not Scalable: Users are asking for it, but it is still

missing multi-process invocation.

• Projects are building many 3rd parties.

8 cores, 15:45 minutes

• Multi-process (same as other modern build

tools)

• Better memory usage

• Caching add-ons (CCache)

• Scalable – 3rd party solutions (DistCC, IceCC,

IncrediBuild)

8 cores, 15:45 minutes

8 cores, 11 minutes

130 cores, 1:40 minutes

130 cores, 1:40 minutes

Real Life Scenarios

Common Multi-Threaded Scenarios

Large in-memory read \ write meshes:

• CAD

• AI (connections between elements)

• Weather forecasting

• Genetic algorithms

Needs all the data to be in-memory and accessible

for all tasks.

Real time performance needs:

• Financial transactions

• Defense systems

• Gaming

Latency and initialization time are very important.

Applications which most of the calculation

(business logic) is Database related (stored

procedures, triggers, OLAP)

CRM, ERP, SAP

Fast sequential processing:

• CnC

• Manufacturing line

• Dependent calculations

Next calculation depends on the previous one.

Common Multi-Process Scenarios

Large independent dataset: when we don’t need

all data in-memory at the same time.

Low dependencies between data entities.

• Simulations (transient analysis) – Ansys, PSCad

• Financial derivatives – Morgan Stanley

• Rendering

Many calculations with small business units.
Solution: batch tasks

• Compilations
• Testing (unit tests, API tests, stress tests)
• Code analysis
• Asset builds
• Math calculations (Banking, Insurance, Diamond

industry).

GPU – applications that scale to use many GPUs

• CUDA, OpenCL

• Rendering

• Password cracking

Output and computation streaming:

NVIDIA Shield, Onlive Service, Netflix, Waze

• Scalability

• Offloading

• Full cloud solution

• SAAS

Summary

Architectural considerations:

• Can my execution be broken to many independent tasks?

• Can the work be divided over more than a single host?

• Do I have large datasets I need to work with?

• How many relations are in my dataset?

• How much time would it take my customers to execute a

large scenario – do I have large scenarios?

Technical considerations:

• Do I have any special communication and

synchronization requirements?

• Dev Complexity - What risks can we have in terms of

race-conditions, timing issues, sharing violations – does

it justify multi-threading programming?

• Would I like to scale processing performance by using

the cloud or cluster?

Some of the known infrastructures to using multi-

core/multi-machine solutions:

• MapReduce (Google – dedicated grid)

• Hadoop (Open source – dedicated grid)

• Univa Grid Engine(Propriety – dedicated grid)

• IncrediBuild (Propriety - ad-hoc \ process

virtualization grid)

Dori Exterman, IncrediBuild CTO

dori@incredibuild.com

IncrediBuild now free in Visual Studio 2017

www.incredibuild.com

mailto:dori.exterman@incredibuild.com

| www.incredibuild.com | 47

Thank you.

