
Investigating C++ 
Applications in Production

on Linux and Windows
Sasha Goldshtein

Software Engineer, Google Research

goldshtn

goldshtn



The Plan

• This is a talk on profiling and investigating C++ applications in 
production on Linux and Windows

• You’ll learn:

❑To obtain and analyze dumps of C++ apps

❑Which production-ready tracing tools can be used with C++ apps

❑To obtain CPU profiles and flame graphs

❑To identify memory leaking call stacks



Tools And Operating Systems Supported

Linux Windows macOS

CPU sampling perf, BCC ETW Instruments, dtrace

Dynamic tracing perf, SystemTap, BCC ⛔️ dtrace

Static tracing perf, SystemTap, BCC ETW dtrace

Dump generation core_pattern, gcore Procdump, WER kern.corefile, gcore

Dump analysis gdb, lldb Visual Studio, WinDbg gdb, lldb

This talk



⚠️Mind The Overhead

• Any observation can change the state of the system, but some 
observations are worse than others

• Diagnostic tools have overhead
• Check the docs

• Try on a test system first

• Measure degradation introduced by the tool

OVERHEAD
This traces various kernel page cache functions and maintains in-kernel counts, which are asynchronously copied 
to user-space. While the rate of operations can be very high (>1G/sec) we can have up to 34% overhead, this is still 
a relatively efficient way to trace these events, and so the overhead is expected to be small for normal 
workloads. Measure in a test environment.

—man cachestat (from BCC)



Dump Files/Core Dumps

• A dump file (core dump) is a memory snapshot of a running process

• Can be generated on crash or on demand

dump file



Generating Dump Files

Linux

• /proc/sys/kernel/core_pattern
configures the core file name or 
application to process the crash

• ulimit -c controls maximum core 
file size (often 0 by default)

• gcore (part of gdb) can create a 
core dump on demand

Windows

• HKLM\SOFTWARE\Microsoft\
Windows\Windows Error 
Reporting\LocalDumps configures 
the crash dump folder, count, 
and type (full/mini)

• Procdump (Sysinternals tool) can 
create a dump on demand



Basic Dump Analysis

Linux

• gdb /path/exe -c core
-ex "bt"

• Further automatic analysis 
possible using gdb or lldb
Python API

Windows

• Visual Studio dump summary

• WinDbg -z app.dmp
-c "!analyze -v"

• Further automatic analysis 
possible using WinDbg scripting 
language or dbgeng.dll



Demo:
Dump Generation And Analysis















Five Things That Will Happen To You If You 
Don’t Have Symbolic Debug Information

Linux Windows



Getting Debug Information

Linux

• Compile with -g
• Separate debuginfo using objcopy

and strip

• Debuginfo packages may be 
available for your distro:
apt install mypkg-dbg

dnf debuginfo-install mypkg

Windows

• Compile with /Zi /DEBUG:FULL
• Symbols can be stripped using 
pdbcopy (public vs. private)

• Microsoft public symbol server:
setx /m _NT_SYMBOL_PATH

…http://msdl.microsoft.com/download/symbols

• You can host your own symbol 
server using symstore



Sampling vs. Tracing

• Sampling works by getting a snapshot or a call stack every N 
occurrences of an interesting event
• For most events, implemented in the PMU using overflow counters and 

interrupts

• Tracing works by getting a message or a call stack at every occurrence 
of an interesting event

CPU timepid 121 pid 121 pid 408 pid 188

system timepid 121 pid 408

CPU sample

disk write



Event Tracing For Windows

• High-performance facility for emitting 100K+ log events per second 
with rich payloads and stack trace support

• CPU samples, file accesses, image loads, heap allocs, threads, window 
messages, …

Providers
Providers

Providers
Providers

Providers
Consumers

Providers
Controllers

Event tracing sessions

events

Log files
events

real-time

logged 
events

buffers



perf

• perf is a Linux multi-tool for performance investigations

• Capable of both tracing and sampling

• Developed in the kernel tree, must match running kernel’s version

• Debian-based: apt install linux-tools-common

• RedHat-based: yum install perf



Flame Graphs

• A visualization method (adjacency graph), very 
useful for stack traces, invented by Brendan 
Gregg
• http://www.brendangregg.com/flamegraphs.html

• Turns thousands of stack trace pages into a 
single interactive graph

• Example scenarios:
• Identify CPU hotspots on the system/application

• Show stacks that perform heavy disk accesses

• Find threads that block for a long time and the stack 
where they do it

http://www.brendangregg.com/flamegraphs.html


Reading a Flame Graph

• Each rectangle is a function

• Y-axis: caller-callee

• X-axis: sorted stacks (not time)

• Wider frames are more common

• Supports zoom, find

• Filter with grep😎



Frame Pointer Omission

Linux

• Most tools will fail to resolve call 
stacks if FPO is used

• Given debug information, some 
stack walkers (e.g. perf) can use 
libunwind to walk FPO stacks

• Disable FPO using
-fno-omit-frame-pointer

Windows

• ETW won’t collect accurate 
event call stacks if FPO is used

• FPO is turned off by default in 
Visual C++ (/Oy-)



Demo:
CPU Profiling With Flame Graphs













Memory Leak Analysis

1. Record call stack and size for each allocation (malloc)

2. Remove outstanding allocation info for each deallocation (free)

3. When desired, dump all outstanding allocation sizes and stacks

[PID 1225 /usr/local/bin/myapp]
8192 outstanding bytes in 16 allocations from stack:
__libc_malloc
operator new
myapp::factory<factory>::make_factory_factory
myapp::main

• Note: this works for any resource, not just memory



The BCC BPF Front-End

• https://github.com/iovisor/bcc

• BPF Compiler Collection (BCC) is a 
BPF frontend library and a massive 
collection of performance tools
• Contributors from Facebook, 

PLUMgrid, Netflix, Sela

• Helps build BPF-based tools in high-
level languages
• Python, Lua, C++

kernel

user

BCC tool BCC tool …

BCC compiler frontend

Clang + LLVM

BCC loader library

BPF runtime
event 

sources

https://github.com/iovisor/bcc


Managed runtimes

Syscall interface

Block I/O Ethernet
Scheduler Mem

Device drivers

Filesystem TCP/IP

CPU

Applications

System libraries

profile
llcstat

hardirqs
softirqs
ttysnoop

runqlat
cpudist

offcputime
offwaketime
cpuunclaimed

memleak
oomkill

slabratetoptcptop
tcplife

tcpconnect
tcpaccept

biotop
biolatency
biosnoop
bitesize

filetop
filelife
fileslower
vfscount
vfsstat
cachestat
cachetop
mountsnoop
*fsslower
*fsdist
dcstat
dcsnoop
mdflush

execsnoop
opensnoop
killsnoop
statsnoop
syncsnoop
setuidsnoop

mysqld_qslower
bashreadline
dbslower
dbstat

mysqlsniff

memleak
sslsniff

gethostlatency
deadlock_detector

ustat
ugc

uthreads
ucalls
uflow

argdist
trace

funccount
funclatency
stackcount



Demo:
Memory Leak Diagnostics













Blocked Thread Investigation

• CPU sampling only identifies time spent on-CPU

• Blocked time is a concern for most applications
• Sleep, wait, lock, disk, network, database, …

• Blocked time can be traced using context switch events
• Windows ETW flag CSwitch, Linux kernel tracepoint sched:sched_switch

CPU 0pid 121 pid 121 pid 408

switch out stack:
mutex_lock
request_processor

switch in switch out stack:
matrix_mult
request_processor

switch in

switch out stack:
sys_read
backup_daemon

pid 121

switch in

CPU 1
switch in
(created)



Enriching The Data

• Lock wait stacks and durations can be associated with the lock
• Which locks are causing the most contention in this application?

• How long does thread 123 typically have to wait for lock ABC?

• Context switch events contain the previous thread, so a wake chain 
can be established
• Thread 123 was woken by thread 456, which released lock ABC

• Application thread 456 was woken by GC thread 678, which had suspended it 
to perform a garbage collection



Enriched Wake Data

Linux
offwaketime from BCC

Windows
Visual Studio Concurrency Visualizer



Demo:
Blocked Thread Analysis











File, Disk, And Network I/O

• Dedicated kernel events exist to trace various types of I/O
• Windows ETW flags DiskIO, FileIO, NetworkTrace

• Linux kernel tracepoints block:*, xfs/ext4/…:*, kprobes on tcp_*, vfs_*

• Reports may include:
• Histogram of I/O operation latencies

• Summary of files accessed, including size and number of reads/writes

• Summary of active TCP connections, including size and number of recv/send

• List of file accesses larger than or slower than a particular threshold



File I/O Summary

Linux
filetop from BCC

Windows
WPA file I/O summary table



Tracing File Accesses in Real-Time

Linux
fileslower from BCC

Windows
etrace

https://github.com/goldshtn/etrace


Demo:
Summarizing I/O Operations













Summary

• We have learned:

✓To obtain and analyze dumps of C++ apps

✓Which production-ready tracing tools can be used with C++ apps

✓To obtain CPU profiles and flame graphs

✓To identify memory leaking call stacks



References

• perf and flame graphs
• https://perf.wiki.kernel.org/index.php/Main_Page

• http://www.brendangregg.com/perf.html

• https://github.com/brendangregg/perf-tools

• Event Tracing for Windows
• https://msdn.microsoft.com/en-

us/windows/hardware/commercialize/test/wpt/ind
ex

• https://github.com/goldshtn/etrace

• https://github.com/goldshtn/LiveStacks

• https://github.com/Microsoft/perfview

• Dump analysis
• https://msdn.microsoft.com/en-

us/library/windows/hardware/ff551063(v=vs.85).as
px

• http://dumpanalysis.org/

• http://windbg.org

• BCC tutorials
• https://github.com/iovisor/bcc/blob/master/docs/t

utorial.md

• https://github.com/iovisor/bcc/blob/master/docs/t
utorial_bcc_python_developer.md

• https://github.com/iovisor/bcc/blob/master/docs/r
eference_guide.md

https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/perf.html
https://github.com/brendangregg/perf-tools
https://github.com/goldshtn/etrace
https://github.com/goldshtn/etrace
https://github.com/goldshtn/LiveStacks
https://github.com/Microsoft/perfview
http://dumpanalysis.org/
http://dumpanalysis.org/
http://windbg.org/
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md


Thank You!
Sasha Goldshtein

Google Research

goldshtn

goldshtn


