
Using Namespace is Bad –
Use Namespace

Yehezkel Bernat – yehezkelshb@gmail.com

Core C++ Meetup – June ‘18

mailto:yehezkelshb@gmail.com


using namespace

• Many examples on the internet include the infamous ‘using 
namespace std;’ directive

• Some people argue that it’s fine and maybe even better than 
cluttering the code with ‘std::’ prefix everywhere

• Some people say that it should be banned from headers (to not affect 
the includers, who may don’t want it) but it’s fine on source files

• Others ban it everywhere



Horror Story

• Today, I’d like to share with you a nasty bug I have seen

• Then, I’ll leave it to you to guess what is my opinion about using 
namespace☺



On Linux it would never happen!

• Same algorithm gave a different (and wrong) result when compiled 
for Android (using gcc), comparing to the result on Windows (MSVC)

• What could it be?



abs – absolutely not what we want!

• <cstdlib>
• std::abs(int)

• std::abs(long)

• std::abs(long long)

• <cmath>
• std::abs(float)

• std::abs(double)

• std::abs(long double)

• (Since C++17, both headers have all the declarations)



abs – absolutely not what we want!

• But there is the evil brother – abs(int) from C

• C, without function overloading, handles different types by using 
different names (e.g. fabs())

• abs is absolutely only for int

• Even if you pass it a float, it gets implicitly converted (truncated) to 
int and int is returned



So what’s happened there?

• The call site used just abs(), without std:: prefix
• There was a using namespace std; involved there

• Apparently, on Windows, with MSVC, the mix of the included (library) 
headers contained the declaration for std::abs()
• (even without explicitly including <cstdlib>)

• The compiler preferred it over C abs()

• When compiling with gcc, only C abs() was visible, so this is what 
the compiler used

• Including <cstdlib> solved the issue



using namespace is bad 

• How can we prevent the bug from happening?

• Don’t use using namespace std;

• Thus, std::abs() must be mentioned
• (maybe by using std::abs())

• The compiler will stop us if it can’t find the C++ version of the 
function



When using namespace is the only way

• For user-defined literals (UDLs) from a library

• E.g. for chrono literals from the standard library
• h/min/s/ms/us/ns – C++14

• y/d – C++20

• using namespace std::literals::chrono_literals

• using namespace std::literals

• using namespace std::chrono_literals



using namespace is Bad –
Use Namespace (explicitly)


