
Pavel Yosifovich

@zodiacon

Concurrency and the

C++ Memory Model

About Me

 Developer, trainer, author, speaker

 Author

Windows Internals 7th edition Part 1 (2017)

WPF 4.5 Cookbook (2012)

Mastering Windows 8 C++ App Development (2013)

 Pluralsight Author (www.pluralsight.com)

 Microsoft MVP

 Blog: http://blogs.Microsoft.co.il/pavely

 Open source projects on GitHub
(http://github.com/zodiacon)

2

http://www.pluralsight.com/
http://blogs.microsoft.co.il/pavely
http://github.com/zodiacon

The C++ Standards

Before the C++11 standard, the C++
standard was C++98

C++03 exists as well, with some fixes for
C++ 98

Since 2011, C++ standards have been
making steady marches every 3 years

C++ 17 is the latest approved C++ standard

C++ 20 is already in the works

3

Concurrency and the C++ Standards

 In the C++ 98 standard, the word “thread” is
never mentioned

Does this mean no threads were used?

 Many different libraries were used for threading

boost, TBB, OpenMP, MFC, …

 Starting from C++ 11

Threads are part of the standard

Including a memory model

Enhancements in C++ 14/17/20

4

Why Concurrency?

Really just two possible reasons

Maximizing performance by the many CPU
cores (and/or GPU threads) on the machine

Structural benefits

Designing for concurrency

Need to think about the problem at hand
before coding begins

Difficult to add concurrency at a later stage
May introduce subtle bugs and increase code complexity

significantly

5

CPUs

 Socket

 Physical chip placed on the motherboard

 Core

 Separate computation unit

 Hardware thread

 Partially separated computational unit (shares some
cache with other HTs within the same core)

 Several of those may be part of a single core

 Hyper-threading

 Intel technology that provides two hardware threads per core

 Similar technology exists in AMD processors

 Logical processor = hardware thread

6

Socket

Core Core

CoreCore

T T T T

T TT T

(Simple?) Example
Summing up matrix elements

(C)2018 Pavel Yosifovich 7

long long SumMatrix1(Matrix<int>& m) {
long long sum = 0;
for (int r = 0; r < m.Rows(); ++r)

for (int c = 0; c < m.Columns(); ++c)
sum += m[r][c];

return sum;
}

long long SumMatrix2(Matrix<int>& m) {
long long sum = 0;
for (int c = 0; c < m.Columns(); ++c)

for (int r = 0; r < m.Rows(); ++r)
sum += m[r][c];

return sum;
}

Row Major

Column Major

Matrix Summation Results
Intel Core i7-7700HQ

Visual Studio 2017 15.6 compiler

x64

8

CPU, Memory and Caches
In earlier days of processors, CPU and memory

speeds were comparable

This is no longer the case

Cache(s) were introduced between CPU
and memory

Cache is small, fast memory

Holds recently accessed data/code

9

CPU Cache Memory

fast slow

Example Cache Hierarchy

10

Core 0
T0

T1

L1 D-Cache

L1 I-Cache

L2 Cache

L3 Cache Main Memory

Core 1
T2

T3

L1 D-Cache

L1 I-Cache

L2 Cache

Core 2
T4

T5

L1 D-Cache

L1 I-Cache

L2 Cache

Core 3
T6

T7

L1 D-Cache

L1 I-Cache

L2 Cache

Cache Sizes and Cache Lines

 Example cache sizes

 L1: 32 KB

 L2: 256 KB

 L3: 8 MB

 Caches don’t work on single byte entities

 Rather, work on cache lines

 Typical size is 64 bytes

 Accessing a single byte reads/writes an entire cache line

 i.e. arrays are fastest as far as hardware is concerned

11

Another Example
Counting the number of even numbers in

an array with parallel threads

(C)2018 Pavel Yosifovich 12

int CountEvenNumbers1(const int* data, int size, int nthreads) {
auto counters_buffer = make_unique<int[]>(nthreads);
auto counters = counters_buffer.get();

int chunk = size / nthreads;
vector<thread> threads;

for (int i = 0; i < nthreads; i++) {
int start = i * chunk;
int end = i == nthreads - 1 ? size : (i + 1) * chunk;

thread t([data, counters](int index, int start, int end) {
for (; start < end; ++start)

if (data[start] % 2 == 0)
++counters[index];

}, i, start, end);

threads.push_back(move(t));
}

for (auto& t : threads)
t.join();

int sum = 0;
for (int i = 0; i < nthreads; i++)

sum += counters[i];
return sum;

}

False Sharing
Sharing cache lines being written by different

threads

13

thread t([data, counters](int index, int start, int end) {
// use local counter
int count = 0;
for (; start < end; ++start)

if (data[start] % 2 == 0)
++count;

// write result just once
counters[index] = count;

}, i, start, end);

Simple(?) Example
What is the value of

b?

5 or 0?

14

int a = 0;
volatile int flag = 0;

thread t1([&]() {
while (flag != 1)

;

int b = a;
cout << "b = " << b << endl;

});

thread t2([&]() {
a = 5;
flag = 1;

});

t1.join();
t2.join();

Some Definitions

 Byte

 Smallest addressable unit of memory

 Memory location

 An object of scalar type (arithmetic, pointer, enum or nullptr_t)

 Or the largest contiguous sequence of non-zero length bit fields

 Thread

 Independent flow of control within the program

 Accessing different memory locations concurrently by different threads is
always safe

 Data race

 When a thread writes to a memory location and another thread reads
from the same memory location at the same time

15

Dekker’s Algorithm

Poor man’s critical section

Can thread 1 and thread 2 enter the
critical section at the same time?

16

flag1 = 1;
if (flag2) {

// back off
}
else {

// enter critical section
}

Thread 1

flag2 = 1;
if (flag1) {

// back off
}
else {

// enter critical section
}

Thread 2

Dekker’s Algorithm Executed

17

CPU 0 CPU 1

Store BufferStore Buffer

Main Memory

flag1 = 1;
if (flag2) …

flag2 = 1;
if (flag1) …

Write 1 to flag1

(sent to store buffer)

Read 0 from flag2

(pass store buffer as it’s

a different memory location)

Write 1 to flag2

(sent to store buffer)

Read 0 from flag1

(pass store buffer as it’s

a different memory location)

Sequential Consistency
 The result of any execution is the same as if

The operation of each thread appears as specified
in program order

Operations of all threads were executed in some
sequential order atomically

18

A

B

T1

C

D

T2

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

T1 T2

A

B

C

D

SC-DRF

Sequential Consistency may be too strict
to get without significant performance
penalty

Compromise

SC for Data Race Free programs

In other words

If program guarantees no data races

Then compiler/runtime/hardware
guarantee Sequential Consistency

19

Optimizations

 The complier knows

 All memory operations in this thread, what they do,
including any data dependencies

 How to be conservative enough in face of possible aliasing

 The compiler does not know

 Which memory locations are “mutable shared” between
threads

 Even if it did, it wouldn’t know the sharing semantics

 How to be conservative enough in case of possible sharing

 Programmer must somehow let the compiler know

20

Optimization Examples
Example single thread optimizations

21

x = 1;
s = "hello";
x = 2;

s = "hello";
x = 2;

for (int i = 0; i < len; i++)
z += a[i];

r = z;
for (int i = 0; i < len; i++)

r += a[i];
z = r;

s1 = "hello";
s2 = "cruel";
s3 = "thread";

s3 = "thread";
s2 = "cruel";
s1 = "hello";

Data Race Prevention
A data race can be prevented by the following

Reads and writes are performed as atomic
operations (std::atomic<>)

One of the conflicting operations happens-before
another

(C)2018 Pavel Yosifovich 22

int count = 0;

auto inc = [&]() {
for (int i = 0; i < 1000000; i++)

count++;
};

thread t[]{ thread(inc), thread(inc),
thread(inc), thread(inc) };

atomic<int> count = 0;

auto inc = [&]() {
for (int i = 0; i < 1000000; i++)

count++;
};

thread t[]{ thread(inc), thread(inc),
thread(inc), thread(inc) };

Data Race No Data Race

Atomic Operations

 An atomic operation is indivisible

Partial change cannot be observed by any
thread

 If all operations on an object are atomic, a read
operation will receive the initial value of the
object or one of the atomic modifications made to
it

 Conversely, non-atomic operations might be seen
as partial results from other threads

 C++ provides atomic types to perform atomic
operations

23

Atomic Types

 The standard atomic types are defined in the <atomic>
header

Template type is std::atomic<T>

 Many atomic operations within the atomic types use
machine instructions that work atomically on the CPU
level

Some are not (discussed later)

 The is_lock_free() member function indicates
whether such operations use atomic CPU instructions

 std::atomic<> has specializations for specific types

24

std::atomic<> Member Functions

 The standard atomic types are not copyable or assignable in
the conventional sense

 Support assignment operator from a non-atomic
corresponding type

 And an operator T to read the value stored in the atomic

 These are special cases for the load() and store()
functions

 Also support exchange(), compare_exchange_weak()
and compare_exchange_strong()

 Support the compound assignment operators (+= etc.)

 The partial specialization for pointer types also supports the
++ and – operators

25

atomic<> Exchange Operations

 Set a new value and return the old value (atomically)

 If the value is as expected, set to desired value and return true

 Otherwise, return false (and update expected to the current
value)

 compare_exchange_weak() allows for spurious failures

 Always use if in a loop

 The fundamental building block in lock-free programming

(C)2018 Pavel Yosifovich 26

T atomic<T>::exchange(T value)

bool atomic<T>::compare_exchange_strong(T& expected, T desired)

Synchronizing Reads and Writes
Example: reading and writing from different

threads

Why does this work? 27

using namespace std;

vector<int> result;
atomic<bool> ready(false);

void reader_thread() {
while (!ready.load()) {

this_thread::sleep_for(chrono::milliseconds(1));
}
std::cout << "The answer is " << result[0] << endl;

}

void writer_thread() {
result.push_back(42);
ready = true;

}

Acquire and Release

 One way barriers

 Fundamental concepts of software and hardware

 Acquire == read (load) operation

 Release == write (store) operation

 A release store operation makes its prior accesses
visible to a thread performing an acquire load that
pairs with that store

28

acquire

release

The Synchronizes-With Relationship

 Always comes from atomic types

 A “suitably tagged” write operation on a variable
synchronizes-with a read operation on that variable
stored by that write

Or a subsequent atomic write by the same thread

Or a sequence of atomic read-modify-write
operations by any thread, where the value read by
the first thread in the sequence is the value initially
written

 “Suitably tagged” depends on the memory ordering
semantics

29

Synchronizes-With
The ordering imposed by one thread reading a

value that was written by another thread

30

Thread 1

Write X = 1

Thread 2

Read X = 1

Fixed Dekker’s Algorithm

31

#include <atomic>

std::atomic<int> flag1 = 0, flag2 = 0;

void Thread1() {
flag1 = 1;
if (!flag2) {

// enter CS
}
else {

// back off
}

}

void Thread2() {
flag2 = 1;
if (!flag1) {

// enter CS
}
else {

// back off
}

}

Synchronizes-withSynchronizes-with

Memory Ordering for Atomics

 Each operation on the atomic type has an optional memory
ordering argument (memory_order enum)

 Default is memory_order_seq_cst (Sequential Consistency)

 Always used when invoked through the operators

 Store operations can use (memory_order_xxx)

 relaxed, release or seq_cst

 Load operations can use

 relaxed, acquire, consume or seq_cst

 Read-modify-write operations can use any memory order

 relaxed, consume, acquire, release, acq_rel, or
seq_cst

32

Relaxed Memory Order

No global ordering of events

But all operations are still atomic

Threads don’t have to agree on the
sequence of events

Intra thread events still obey happens-
before rules

Better to wrap relaxed operations inside
types that implement them

33

Relaxed Memory Order Example

(C)2018 Pavel Yosifovich 34

#include <atomic>

std::atomic<int> count = 0;

// N workers
void WorkerThread() {

while(…) {
if (…) {

++count;
}

}
}

void main() {
launch_workers();
…
join_workers();
cout << count << endl;

}

#include <atomic>

std::atomic<int> count = 0;

// N workers
void WorkerThread() {

while(…) {
if (…) {

count.fetch_add(1, memory_order_relaxed);
}

}
}

void main() {
launch_workers();
…
join_workers();
cout << count.load(memory_order_relaxed) << endl;

}

Other Memory Ordering Options

 Acquire/release (memory_order_acq_rel)

 Just below SC

Acquire can move above (a previous) release

 Acquire (memory_order_acquire)

Load (read)

 Release (memory_order_release)

 Store (write)

 Consume (memory_order_consume)

Most (all) compilers promote to acquire

Deprecated as of C++ 17 (may be removed in C++ 20)

35

Slightly Relaxed Dekker’s Algorithm

36

#include <atomic>

std::atomic<int> flag1 = 0, flag2 = 0;

void Thread1() {
flag1 = 1;
if (!flag2) {

// enter CS
}
else {

// back off
}

}

void Thread2() {
flag2 = 1;
if (!flag1) {

// enter CS
}
else {

// back off
}

}

#include <atomic>

std::atomic<int> flag1 = 0, flag2 = 0;

void Thread1() {
flag1.store(1, memory_order_release);
if (!flag2.load()) {

// enter CS
}
else {

// back off
}

}

void Thread2() {
flag2.store(1, memory_order_release);
if (!flag1.load()) {

// enter CS
}
else {

// back off
}

}

The Double Checked Locking Algorithm

Classic way to get a singleton object

Fails in today’s systems

37

struct widget {
//...

};

widget* instance = nullptr;
mutex wmutex;

widget* getInstance() {
if (instance == nullptr) {

lock_guard lock(wmutex); // lock_guard<mutex> lock(wmutex) in pre C++17
if (instance == nullptr)

instance = new widget();
}
return instance;

}

Double Checked Locking Algorithm Fixed

Atomicity and ordering provided by

atomics and the memory model

38

struct widget {
//...

};

atomic<widget*> instance = nullptr;
mutex wmutex;

widget* getInstance() {
if (instance == nullptr) {

lock_guard lock(wmutex);
if (instance == nullptr)

instance = new widget();
}
return instance;

}

First check (atomic)

Then acquire lock

Then second check

Then create instance, then assign

Lazy Initialization Alternative

39

atomic<widget*> instance = nullptr;
atomic<bool> create = false;

widget* getInstance() {
if (instance.load() == nullptr) {

if (!create.exchange(true))
instance = new widget(); // construct

else
while (instance.load() == nullptr) {} // spin

}
return instance;

} atomic<widget*> instance = nullptr;
atomic<bool> create = false;

widget* getInstance() {
if (instance.load(memory_order_acquire) == nullptr) {

if (!create.exchange(true))
instance.store(new widget(), memory_order_release);

else
while (instance.load(memory_order_acquire) == nullptr) {}

}
return instance.load(memory_order_acquire);

}

Lazy Initialization with C++ 11

Uses once_flag behind the scenes

40

widget* instance = nullptr;

widget* getInstance() {
static once_flag create;
call_once(create, [] {

instance = new widget();
});
return instance;

}

widget* getInstance() {
static widget instance;
return &instance;

}

Fences

 Also known as memory barriers

 Prevent instruction moving across the barrier in
both directions

 Mostly useful with memory_order_relaxed

 Unrelated to a specific memory location

 Can be used to enforce ordering for non atomic
variables

 Usage: call the atomic_thread_fence function

 Prefer ordering with atomics

41

SC Atomic Implementation by CPU

CPU
Load

Normal / SC atomic

Store

Normal / SC Atomic
Compare-and-Swap (CAS)

x86/x64 mov / mov mov / xchg cmpxchg

IA 64 ld / ld.acq st / st.rel;mf cmpxchg.rel;mf

Power ld / sync;ld;cmp;bc;isync st / sync;st
sync;_loop:lwarx;cmp;bc
_exit;stwcx.;bc
_loop;isync;_exit:

ARM v7 ldr / ldr;dmb str / dmb;str;dmb dmb; (compare-exchange loop)

ARM v8 ldr / ldra str / strl

42

Memory Order Performance by CPU

43

x86/x64 IA64 Power ARM v7 ARM v8

SC-DRF

Ultra Strong

(Fully SC)

Ultra Relaxed

L

S

S
L

S

L

S

L

L S

The volatile Keyword
Volatile in Java & .NET is not the same as C++ volatile

Java/.NET volatile is the same as atomic in C/C++

44

Mutexes

Atomics

Memory barriers

Acquire/release

Inside Memory Model Outside Memory Model

volatile

• Volatile variables are unoptimizable

▪ Best to think of them as “I/O”

Thank You!

