
Curiously Recurring
Template Pattern (aka CRTP)

By: Avi Lachmish

Agenda

• What is CRTP

• Why do we need it

• What could go wrong

• Operator implementation

• Main approaches

• references

What is CRTP

• A basic example

template <typename Derived> class CuriousBase

{ ... };

class Curious : public CuriousBase <Curious>

{ ... };

What is CRTP - continue

template <typename Derived> class CuriousBase

{

public:

void foo() {

Derived & derived = static_cast< Derived &>(*this);

use derived...

}

};

class Curious : public CuriousBase <Curious> { ... };

Why do we need it

• static polymorphism - alternative to virtual, avoids memory and
execution time overhead.

• Using expression templates - computes expressions only when
needed, removes loops and copies

Why do we need it - continue

Dynamic Polymorphism

struct shape {

virtual std::string draw() = 0;

};

struct rectangle : shape{

std::string draw() override {

return “rectangle”;

}

};

Static Polymorphism

template<typename T>

struct shape {

std::string draw() {

return static_cast<T*>(this)->draw();

};

struct rectangle : shape<rectangle>{

std::string draw() {

return “rectangle”;

}

};

Why do we need it - continue

Dynamic Polymorphism

void draw(shape &s) {

std::cout << s.draw();

}

Rectangle r;

draw(&r);

Static Polymorphism

template<typename T>

void draw(shape<T> &s) {

std::cout << s.draw();

}

Rectangle r;

draw(&r);

• Of course, this comes with some limitations in the flexibility of static
polymorphism.
E.g. different CRTP-Derived classes cannot be addressed with a
common Base pointer/reference!

Why do we need it - continue

Dynamic Polymorphism

• resolved at run time (dynamic binding)
using vptr and vtable

• base class is abstract if any of its
functions is a pure virtual

• memory cost to store vptr in each
object, can be significant for small
classes

• time cost for dynamic dispatch at
every virtual function call, no inlining

• very flexible: pass base
pointer/reference to a function, iterate
over arrays of base
pointers/references, ...

Static Polymorphism
• resolved at compile time (early

binding) using CRTP templates
resolution

• base class is a templated class, its
methods call the ones of its derived
class instantiation
(static_cast<T*>(this)->call();)

• no memory overhead
• no time overhead, possible inlining

for optimization
• limited flexibility: no addressing via

Base pointers/references

What could go wrong – bad creation

class Derived1 : public Base<Derived1>

{

...

};

class Derived2 : public Base<Derived1> // bug in this line of code

{

...

};

What could go wrong – fix bad creation

template <typename T>

class Base

{

public:

// ...

private:

Base(){};

friend T;

};

What could go wrong – method hidden

• risk with CRTP is that methods in the derived class will hide methods
from the base class with the same name since we are not using virtual in
this design pattern.

What could go wrong – incomplete type
template <typename DerivedT> class CuriousBase

{

public:

using derived_type = typename DerivedT::type; // this is an error

void foo() {

DerivedT & derived = static_cast< DerivedT &>(*this);

derived.bar(); //this is fine

}

};

class Curious : public CuriousBase <Curious> {

using type = int;

void bar();

};

Corner cases - Operator implementation

• The Barton-Nackman trick

template<typename T>

class Array {

static bool areEqual(Array<T> const& a, Array<T> const& b) ;

public:

friend bool operator==(Array const& a, Array const& b) {

return areEqual(a, b);

}

};

The Barton-Nackman trick

template<typename Derived>

class EqualityCompareable {

public:

friend bool operator!=(Derived const& x1, Derived const& x2) { return !(x1==x2); }

};

Class X : public EqualityCompareable<X> {

public:

friend bool operator==(X const& x1, X const& x2) {…}

};

Main approaches

• Façade - Adding functionality, some classes provide generic
functionality, that can be re-used by many other classes. The derive
class is representing an interface used by the base class reused code.

• Static interfaces - In this case, the base class does represent the
interface and the derived one does represent the implementation, as
usual with polymorphism. But the difference with traditional
polymorphism is that there is no virtual involved and all calls are
resolved during compilation.

Main approaches - Facade
template <typename T>

struct NumericalFunctions {

void scale(double multiplicator) {

T& underlying = static_cast<T&>(*this);

underlying.setValue(underlying.getValue() * multiplicator);

}

void square() {

T& underlying = static_cast<T&>(*this);

underlying.setValue(underlying.getValue() * underlying.getValue());

}

void setToOpposite() {

scale(-1);

}

};

Main approaches – Façade continue
class Density : public NumericalFunctions<Density>

{

public:

double getValue() const;

void setValue(double value);

...

};

Main approaches – static interface

template <typename T>

class Amount

{

public:

double getValue() const

{

return static_cast<T const&>(*this).getValue();

}

};

Main approaches – static interface continue
class Constant42 : public Amount<Constant42> {
public:

double getValue() const {return 42;}
};

class Variable : public Amount<Variable> {
public:

explicit Variable(int value) : value_(value) {}
double getValue() const {return value_;}

private:
int value_;

};

Main approaches – static interface continue

template<typename T>

void print(Amount<T> const& amount)

{

std::cout << amount.getValue() << '\n';

}

References

• Boost operators library
https://www.boost.org/doc/libs/1_65_1/boost/operators.hpp

• https://www.fluentcpp.com/posts/

• C++ template the complete guide (book)

https://www.boost.org/doc/libs/1_65_1/boost/operators.hpp
https://www.fluentcpp.com/posts/

