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SO, You want to make some I/O….



SO, You want to make some I/O….

That’s pretty easy:
//Create socket
socket_desc = socket(AF_INET , SOCK_STREAM , 0);

// Bind it
bind(socket_desc,(struct sockaddr *)&server , sizeof(server))

//Listen
listen(socket_desc , 3);

//accept connection from an incoming client
client_sock = accept(socket_desc, (struct sockaddr *)&client, 
(socklen_t*)&c);



SO, You want to make some I/O….

But it’s blocking :(

That’s pretty easy:
//Create socket
socket_desc = socket(AF_INET , SOCK_STREAM , 0);

// Bind it
bind(socket_desc,(struct sockaddr *)&server , sizeof(server))

//Listen
listen(socket_desc , 3);

//accept connection from an incoming client
client_sock = accept(socket_desc, (struct sockaddr *)&client, 
(socklen_t*)&c);



Not a problem - let’s put it in a thread
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Controller

That’s fine for small number of 
connections, but does it scale?
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Threads do not scale well

◦ Lots of resource for thread that do 
nothing most of the time

◦ Every service requires a full context 
switch

◦ Thread design must be safe and 
reentrant



Warning!

The following slide is not recommended
◦ For those who are allergic to garbage collection
◦ For those who get stressed without destructors
◦ For those who are obsessive with pre-compiling 

their code



Asynchronous I/O in Javascript

fs.readFile(“myfile.txt”, function(data) {
    doSomething(data)
})

◦ When this function gets executed, it 
starts the I/O operation, then 
queues a completion handler.

◦ The process is then release to do 
other things

◦ When there’s nothing else to do, 
and the I/O completes, the handler 
will get invoked.



“

Proactor is a software design pattern 
for event handling in which long 
running activities are running in an 
asynchronous part. A completion 
handler is called after the 
asynchronous part has terminated.

Wikipedia, https://en.wikipedia.org/wiki/Proactor_pattern



Enter boost.asio

◦ Written by Christopher Kohlhoff
◦ Part of boost since 2005
◦ Provides infrastructure for asynchronous 

I/O with emphasis on networking.
◦ Extensible for any other kind of I/O
◦ Handles only low-level communication
◦ There’s also a non-boost variant, called 

simply asio



Getting Started

int main()
{
    asio::io_service service;

    asio::deadline_timer timer(service, boost::posix_time::seconds(3));

    timer.async_wait([](auto err) {
    std::cout << timestamp << ": Timer expired!\n";
    });

    std::cout << timestamp << ": Calling run\n";
    service.run();
    std::cout << timestamp << ": Done\n";
}

simple_timer



Getting Started



ASIO Basics

I/O Object I/O Service

boost::asio::io_serviceboost::asio::deadline_timer

● Represents an I/O request
● Provides a completion 

handler

● A “main loop”
● Waits for I/O operation to 

complete
● Invokes the completion 

handler

An application may have multiple I/O 
services, but each I/O object is attached to 
one I/O service exactly.



Completion Order

int main()
{
    asio::io_service service;

    asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
    asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

    timer1.async_wait([](auto err) {
    std::cout << timestamp << ": Timer 1 expired!\n";
    });

    timer2.async_wait([](auto err) {
    std::cout << timestamp << ": Timer 2 expired!\n";
    });

    std::thread main_loop([&]() {
    std::cout << timestamp << ": Starting io_service\n";
    service.run();
    });
    main_loop.join();
}

single_thread



Completion Order



Completion Order

I/O Service

The I/O service picks a completion handler 
from the queue and executes it.

Completion
Queue

Timer 1

Timer 2

Execution 
Order



Multiple Threads

int main()
{
    asio::io_service service;

    asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
    asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

    timer1.async_wait([](auto err) {
    std::cout << timestamp << ": Timer 1 expired!\n";
    });

    timer2.async_wait([](auto err) {
    std::cout << timestamp << ": Timer 2 expired!\n";
    });

    // Invoke 2 threads for processing completion handlers
    std::thread main_loop1([&]() { service.run(); });
    std::thread main_loop2([&]() { service.run(); });

    main_loop1.join();
    main_loop2.join();
}

multiple_threads



Multiple Threads



Completion Order

I/O Service

Multiple threads can be attached to an I/O 
service to create a thread pool. Whenever a 
handler is ready, one of the threads will pick 
it up and execute it.

Completion
Queue

Timer 1

Timer 2

Thread 1

Thread 2



Strands
int main()
{
    asio::io_service service;
    asio::io_service::strand strand(service);

    asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
    asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

    timer1.async_wait(strand.wrap([](auto err) {
    std::cout << timestamp << ": Timer 1 expired!\n";
    }));

    timer2.async_wait(strand.wrap([](auto err) {
    std::cout << timestamp << ": Timer 2 expired!\n";
    }));

    // Invoke 2 threads for processing completion handlers
    std::thread main_loop1([&]() { service.run(); });
    std::thread main_loop2([&]() { service.run(); });

    main_loop1.join();
    main_loop2.join();
}

strand



Strands
int main()
{
    asio::io_service service;
    asio::io_service::strand strand(service);

    asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
    asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

    timer1.async_wait(strand.wrap([](auto err) {
    std::cout << timestamp << ": Timer 1 expired!\n";
    }));

    timer2.async_wait(strand.wrap([](auto err) {
    std::cout << timestamp << ": Timer 2 expired!\n";
    }));

    // Invoke 2 threads for processing completion handlers
    std::thread main_loop1([&]() { service.run(); });
    std::thread main_loop2([&]() { service.run(); });

    main_loop1.join();
    main_loop2.join();
}

strand



Strands



Strands

I/O Service

Strand is a synchronization mechanism. Only 
one compl. Handler, wrapped by a strand 
will be executed in any given time.

Thread Pool

Completion Handlers 
wrapped by a strand

Execute Serially



Networking with boost::asio



Networking with boost::asio

◦ Boost::asio is first and foremost a 
networking library.

◦ Provides abstractions for common 
network related objects:
▫ Sockets
▫ Addresses
▫ Name resolution
▫ Buffers

◦ Also, built-in serial port support



Example: Asynchronous HTTP GET

int main()
{
    tcp::resolver::query q{ "theboostcpplibraries.com", "80" };
    resolv.async_resolve(q, resolve_handler);

    ioservice.run();
}

First, we have to resolve the address. 
We have a 
boost::asio::tcp::resolver object to 
handle that.



Example: Asynchronous HTTP GET

void resolve_handler(const boost::system::error_code &ec,
    tcp::resolver::iterator it)
{
    if (!ec)
    tcp_socket.async_connect(*it, connect_handler);
}

When the address is resolved, the 
resolve_handler function will be 
executed.
If it completed without errors, we can 
try to connect using a 
boost::asio::tcp_scoket



Example: Asynchronous HTTP GET

void connect_handler(const boost::system::error_code &ec)
{
    if (!ec)
    {
    std::string r =
    "GET / HTTP/1.1\r\nHost: theboostcpplibraries.com\r\n\r\n";
    write(tcp_socket, buffer(r));
    tcp_socket.async_read_some(buffer(bytes), read_handler);
    }
}

The connect_handler function will be 
called when the connection is ready. 
We write the request (synchronously) 
then issue an asynchronous read 
request.



Example: Asynchronous HTTP GET

std::array<char, 4096> bytes;

void connect_handler(const boost::system::error_code &ec)
{
    if (!ec)
    {
    std::string r =
    "GET / HTTP/1.1\r\nHost: theboostcpplibraries.com\r\n\r\n";
    write(tcp_socket, buffer(r));
    tcp_socket.async_read_some(buffer(bytes), read_handler);
    }
}

A boost::asio::buffer object wraps 
the actual buffer in memory. It must 
be valid across the whole scope of 
the read.



Example: Asynchronous HTTP GET

void read_handler(const boost::system::error_code &ec,
    std::size_t bytes_transferred)
{
    if (!ec)
    {
    std::cout.write(bytes.data(), bytes_transferred);
    tcp_socket.async_read_some(buffer(bytes), read_handler);
    }
    else
    std::cout << "End of stream" << std::endl;
}

The read_handler function will be 
called when data has arrived. 
It the re-issues the read request until 
no more data is available. 

This is not a 
recursion!



Example: Asynchronous HTTP GET



Boost.asio and Networking-TS

◦ Networking TS is a broad scope 
endeavor to standardize 
networking in C++

◦ It has both sync & async semantics
◦ Async is heavily based on 

boost::asio
◦ It also borrows concepts such as 

buffers
◦ Change in names (So we have something new 

to learn) 



Boost.asio and Networking-TS

◦ Since boost 1.66.0, compatibility 
headers are provided

◦ See here

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/net_ts.html


Asynchronous file I/O



It is possible to do asynchronous file 
I/O with boost::asio



It is possible to do asynchronous file 
I/O with boost::asio

https://docs.google.com/file/d/1oEn39a37G7TVOWVU2j3MhqLxuXdyfLmk/preview


Asynchronous File I/O

◦ Currently, File I/O is not supported 
in a platform independent manner.

◦ Windows uses OVERLAPPED I/O 
requests.

◦ Posix is a mess.



Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
    FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
    OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,  
    NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

  GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
    FALSE);

...
}

 });

ioservice.run();



Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
    FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
    OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,  
    NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

  GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
    FALSE);

...
}

 });

ioservice.run();

Create a file with FILE_FLAG_OVERLAPPED



Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
    FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
    OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,  
    NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

  GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
    FALSE);

...
}

 });

ioservice.run();

Issue an overlapped I/O action, providing an OVERLAPPED 
structure and an event.



Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
    FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
    OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,  
    NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

  GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
    FALSE);

...
}

 });

ioservice.run();

Create a boost::asio::windows::object_handle object that 
binds the I/O service to the event handle



Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
    FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
    OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,  
    NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

  GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
    FALSE);

...
}

 });

ioservice.run();

Specify a function to receive the result or the error code



Asynchronous File I/O In POSIX

 io_service ioservice;

  posix::stream_descriptor stream{ioservice, STDOUT_FILENO};
  auto handler = [](const boost::system::error_code&, std::size_t) {
    std::cout << ", world!\n";
  };
  async_write(stream, buffer("Hello"), handler);

  ioservice.run();

◦ The basic type here is 
posix::stream_descriptor.

◦ It’s a wrapper around 
platform-specific file descriptor

◦ Provide async stream semantics



Learning More



Asynchronous File I/O

◦ YouTube, talks by Michael Caisse 
and others

◦ Nice, extensive getting started 
https://theboostcpplibraries.com/boost.asio

◦ Old, but covers things that are not 
usually covered 
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started
-with-boostasio/

◦ Boost.asio official documentation
◦ RTFC

https://theboostcpplibraries.com/boost.asio
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started-with-boostasio/
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started-with-boostasio/

