Asynchronous |/O
With boost.asio

Avishay Orpaz

@ avishorp@gmail.com

y @avishorp
) https://github.com/avishorp

® SO, You want to make some |/O....

® SO, You want to make some |/O....

That’s pretty easy:

//Create socket
socket_desc = socket(AF_INET , SOCK_STREAM , 0);

// Bind it
bind(socket_desc, (struct sockaddr *)&server , sizeof(server))

//Listen
listen(socket_desc , 3);

//accept connection from an incoming client
client_sock = accept(socket_desc, (struct sockaddr *)&client,
(socklen_t*)&c);

® SO, You want to make some |/O....

That’s pretty easy:

//Create socket
socket_desc = socket(AF_INET , SOCK_STREAM , 0);

// Bind it
bind(socket_desc, (struct sockaddr *)&server , sizeof(server))

//Listen
listen(socket_desc , 3);

//accept connection from an incoming client
client_sock = accept(socket_desc, (struct sockaddr *)&client,
(socklen_t*)&c);

But it’s blocking (

® Notaproblem - let’s put it in a thread

<> Conn. Handler

Conn. Handler

Conn. Handler

Conn. Handler

Conn. Handler

Conn. Handler

Conn. Handler

Conn. Handler

That’s fine for small number of
connections, but does it scale?

C

)

® Threads do not scale well

o Lots of resource for thread that do
nothing most of the time
o Every service requires a full context

switch
o Thread design must be safe and

reentrant

The following slide is not recommended

o For those who are allergic to garbage collection

o For those who get stressed without destructors

o For those who are obsessive with pre-compiling
their code

® Asynchronous I/O in Javascript

fs.readFile (™myfile.txt”, function (data) {
<> doSomething (data)
})

o When this function gets executed, it
starts the /O operation, then
queues a completion handler.

o The process is then release to do
other things

o When there’s nothing else to do,
and the I/O completes, the handler
will get invoked.

()

Proactor is a software design pattern
for event handling in which long
running activities are running in an
asynchronous part. A completion
handler is called after the
asynchronous part has terminated.

‘ Wikipedia, https://en.wikipedia.org/wiki/Proactor_pattern

® [Enter boost.asio

o Written by Christopher Kohlhoff

o Part of boost since 2005

o Provides infrastructure for asynchronous
/O with emphasis on networking.

o Extensible for any other kind of 1/O

o Handles only low-level communication

o There’s also a non-boost variant, called
simply asio

int main()

{

asio::io_service service;

asio::deadline_timer timer(service, boost::posix_time::seconds(3));

timer.async_wait([J](auto err) {
std::cout << timestamp << ": Timer expired!\n";

1)

std::cout << timestamp << ": Calling run\n";
service.run();
std::cout << timestamp << ": Done\n";

® Getting Started

<> H:\boost.asio - Lecture for CORECPPIL\asio_demos\x64\Release>simple_timer.exe

® ASI|IO Basics

boost::asio::deadline_timer boost::asio::io_service
I/O Object I/O Service
Represents an I/O request e A “main loop”
Provides a completion e Waits for I/O operation to
handler complete
e Invokes the completion
handler

An application may have multiple |/O
services, but each |/O object is attached to
one /O service exactly.

® Completion Order

{

int main()

asio::io_service service;

asio::deadline_timer timerl1(service, boost::posix_time
asio::deadline_timer timer2(service, boost::posix_time

timerl.async_wait([J(auto err) {
std::cout << timestamp << ": Timer 1 expired!\n";

1)

timer2.async_wait([J(auto err) {
std::cout << timestamp << ": Timer 2 expired!\n";

1)

std: :thread main_loop([&]() {
std::cout << timestamp << "
service.run();

1)

main_loop. join();

: Starting io_service\n";

::seconds(3));
::seconds(3));

&5@ single_thread

® Completion Order

<> H:\boost.asio - Lecture for CORECPPIL\asio_demos\x64\Release>

® Completion Order

I/O Service
<> Timer 1
Execution
Order
Timer 2
Completion
Queue

‘ The I/O service picks a completion handler
from the queue and executes it.

® Multiple Threads
int main()
{
<::) asio::io_service service;
asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
asio::deadline_timer timer2(service, boost::posix_time::seconds(3));
timerl.async_wait([J(auto err) {
std::cout << timestamp << ": Timer 1 expired!\n";
1)
timer2.async_wait([J(auto err) {
std::cout << timestamp << ": Timer 2 expired!\n";
1)
// Invoke 2 threads for processing completion handlers
std: :thread main_loop1([&]() { service.run(); });
std: :thread main_loop2([&]() { service.run(); });
main_loopl.join();
main_loop2. join();
3
&5@ multiple_threads

® Multiple Threads

H:\boost.asio - Lecture for CORECPPIL\asio_demos\x64\Release>

O

® Completion Order

I/O Service Thread 1
<> Timer 1
Thread 2
Timer 2
Completion
Queue

Multiple threads can be attached to an 1/0O
service to create a thread pool. Whenever @
handler is ready, one of the threads will pick
it up and execute it.

® Strands

{

3

int main()

aslo::io_service service;
asio::io_service::strand strand(service);

asio::deadline_timer timerl1(service, boost::posix_time
asio::deadline_timer timer2(service, boost::posix_time

timerl.async_wait(strand.wrap([J(auto err) {

std::cout << timestamp << ": Timer 1 expired!\n";
1);
timer2.async_wait(strand.wrap([J(auto err) {
std::cout << timestamp << ": Timer 2 expired!\n";
1));

// Invoke 2 threads for processing completion handlers
std::thread main_loop1([&]() { service.run(); });
std: :thread main_loop2([&]() { service.run(); });

main_loop1l.join();
main_loop2.join();

::seconds(3));
::seconds(3));

@ strand

® Strands

{

3

int main()

aslo::io_service service;
asio::io_service::strand strand(service);

asio::deadline_timer timerl1(service, boost::posix_time
asio::deadline_timer timer2(service, boost::posix_time

timerl.async_wait(strand.wrap(l J(auto err) {

std::cout << timestamp << ": Timer 1 expired!\n";
1);
timer2.async_wait(strand.wrap([J(auto err) {
std::cout << timestamp << ": Timer 2 expired!\n";
1));

// Invoke 2 threads for processing completion handlers
std::thread main_loop1([&]() { service.run(); });
std: :thread main_loop2([&]() { service.run(); });

main_loop1l.join();
main_loop2.join();

::seconds(3));
::seconds(3));

@ strand

H:\boost.asio - Lecture for CORECPPIL\asio_demos\x64\Release>

O

® Strands

Completion Handlers
wrapped by a strand

o Thread Pool

Execute Serially

‘ Strand is a synchronization mechanism. Only
one compl. Handler, wrapped by a strand
will be executed in any given time.

‘ Networking with boost:asio

® Networking with boost:asio

() o Boost:asio is first and foremost @

networking library.
o Provides abstractions for common

network related objects:
= Sockets

= Addresses

= Name resolution

o Buffers

o Also, built-in serial port support

® Example: Asynchronous HTTP GET

int main()

{

tcp::resolver::query q{ "theboostcpplibraries.com", "80" };
(::) resolv.async_resolve(q, resolve_handler);

ioservice.run();

3

First, we have to resolve the address.
We have a

boost::asio::tcp::resolver object to
handle that.

® Example: Asynchronous HTTP GET

void resolve_handler(const boost::system::error_code &ec,
tcp::resolver::iterator it)

{

() if (lec)

tcp_socket.async_connect(*it, connect_handler);

}

When the address is resolved, the
resolve_handler function will be

executed.
If it completed without errors, we can

try to connect using @
boost::asio: :tcp_scoket

Example: Asynchronous HTTP GET

T

void connect_handler(const boost::system::error_code &ec)
{
if (lec)
{
std::string r =
"GET / HTTP/1.1\r\nHost: theboostcpplibraries.com\r\n\r\n";
write(tcp_socket, buffer(r));
tcp_socket.async_read_some(buffer(bytes), read_handler);

3
}

ne connect_handler function will be

called when the connection is readu.

We write the request (synchronously)
then issue an asynchronous read
request.

® Example: Asynchronous HTTP GET

std: :array<char, 4096> bytes;

void connect_handler(const boost::system::error_code &ec)

O I«

if (lec)
{

std::string r =

write(tcp_socket, buffer(r));
tcp_socket.async_read_some(buffer(bytes), read_handler);
3
3

"GET / HTTP/1.1\r\nHost: theboostcpplibraries.com\r\n\r\n";

A boost: :asio: :buffer object wraps
the actual buffer in memory. It must
be valid across the whole scope of
the read.

® Example: Asynchronous HTTP GET

void read_handler(const boost::system::error_code &ec,
std::size_t bytes_transferred) This is not @

{ recursion!
O if (lec)

{
std::cout.write(bytes.data(), bytes_transferred);
tcp_socket.async_read_some(buffer(bytes), read_handler);

}

else
std::cout << "End of stream" << std::endl;

The read_handler function will be
called when data has arrived.

't the re-issues the read request until
no more data is available.

® Example: Asynchronous HTTP GET

<> H:\boost.asio - Lecture for CORECPPIL\asio_demos\x64\Release>

[

® Boost.asio and Networking-TS

o Networking TS is a broad scope

() endeavor to standardize
networking in C++

o |t has both sync & async semantics

o Async is heavily based on
boost:asio

o |t also borrows concepts such as
buffers

e ChOnge IN NAOMES (So we have something new

to learn)

o Since boost 1.66.0, compatibility
) headers are provided
o See

boost

(58 88 , LIBRARIEGES

Networking TS compatibility

Boost.Asio now provides the interfaces and functionality specified by the "C++ Extensions for Networking” Technical Specification. In addition to access via the usual Boost.Asio head
the TS. These are listed in the table below:

Networking TS header Boost.Asio header

#include <buffers #include <boost/asio/ts/buffer.hpp>
#include <executors #include <boost/asio/ts/executor.hpp>
#include <internet> #include <boost/asio/ts/internet.hpp>
#include <io_context> #include <boost/asio/ts/io_context.hpp>
#include <net> include <bkoost/asio/ts/net.hpp>
#include <netfwd> inclu <boost/asio/ts/netfwd.hpp>

#include <socket> i 1 <boost/asic/ts/socket .hpp>

#include <timer> 1 <boost/asio/ts/timer.hpp>

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/net_ts.html

‘ Asynchronous file 1/O

O Itis possible to do asynchronous file
/O with boost:asio

O Itis possible to do asynchronous file
/O with boost:asio

https://docs.google.com/file/d/1oEn39a37G7TVOWVU2j3MhqLxuXdyfLmk/preview

® Asynchronous File I/O

) o Currently, File I/O is not supported
in a platform independent manner.

- Windows uses OVERLAPPED I/O
requests.

o POSIiX is a mess.

® Asynchronous File I/0O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,

<> NULL);

OVERLAPPED overlapped;

overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,
FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows: :object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {

GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
FALSE);

}
1)

ioservice.run();

® Asynchronous File I/0O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
<::> OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
NULL);

OVERLAPPED overlapped;

overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,
FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows: :object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {

GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
FALSE);

}
1)

ioservice.run();

Create a file with FILE_FLAG_OVERLAPPED

® Asynchronous File I/0O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
<::> OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
NULL);

OVERLAPPED overlapped;

overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,
FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows: :object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {

GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
FALSE);

}
1)

ioservice.run();

Issue an overlapped I/O action, providing an OVERLAPPED
structure and an event.

® Asynchronous File I/0O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
<:> OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
NULL);

OVERLAPPED overlapped;

overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,
FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows: :object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {

GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
FALSE);

}
1)

ioservice.run();

Create a boost::asio: :windows: :object_handle object that
binds the 1/O service to the event handle

® Asynchronous File I/0O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,

<> NULL);

OVERLAPPED overlapped;

overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,
FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows: :object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {

GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
FALSE);

}
1)

ioservice.run();

Specify a function to receive the result or the error code

® Asynchronous File I/0O In POSIX

io_service ioservice;

posix::stream_descriptor stream{ioservice, STDOUT_FILENO};
<:> auto handler = [](const boost::system::error_code&, std::size_t) {
std::cout << ", world!\n";
s

async_write(stream, buffer("Hello"), handler);

ioservice.run();

o The basic type here is
posix: :stream_descriptor.
o |t’'s a wrapper around
platform-specific file descriptor
o Provide async stream semantics

® Asynchronous File I/O

() o YouTube, talks by Michael Caisse
and others
o Nice, extensive getting started

o Old, but covers things that are not
usually covered

o Boost.asio official documentation
o RTFC

https://theboostcpplibraries.com/boost.asio
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started-with-boostasio/
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started-with-boostasio/

