
Asynchronous I/O
With boost.asio

Avishay Orpaz

avishorp@gmail.com
@avishorp
https://github.com/avishorp

SO, You want to make some I/O….

SO, You want to make some I/O….

That’s pretty easy:
//Create socket
socket_desc = socket(AF_INET , SOCK_STREAM , 0);

// Bind it
bind(socket_desc,(struct sockaddr *)&server , sizeof(server))

//Listen
listen(socket_desc , 3);

//accept connection from an incoming client
client_sock = accept(socket_desc, (struct sockaddr *)&client,
(socklen_t*)&c);

SO, You want to make some I/O….

But it’s blocking :(

That’s pretty easy:
//Create socket
socket_desc = socket(AF_INET , SOCK_STREAM , 0);

// Bind it
bind(socket_desc,(struct sockaddr *)&server , sizeof(server))

//Listen
listen(socket_desc , 3);

//accept connection from an incoming client
client_sock = accept(socket_desc, (struct sockaddr *)&client,
(socklen_t*)&c);

Not a problem - let’s put it in a thread

Conn. Handler

Controller

That’s fine for small number of
connections, but does it scale?

Conn. Handler

Conn. Handler

Conn. Handler

Conn. Handler
Conn. Handler

Conn. Handler

Conn. Handler

Threads do not scale well

◦ Lots of resource for thread that do
nothing most of the time

◦ Every service requires a full context
switch

◦ Thread design must be safe and
reentrant

Warning!

The following slide is not recommended
◦ For those who are allergic to garbage collection
◦ For those who get stressed without destructors
◦ For those who are obsessive with pre-compiling

their code

Asynchronous I/O in Javascript

fs.readFile(“myfile.txt”, function(data) {
 doSomething(data)
})

◦ When this function gets executed, it
starts the I/O operation, then
queues a completion handler.

◦ The process is then release to do
other things

◦ When there’s nothing else to do,
and the I/O completes, the handler
will get invoked.

“

Proactor is a software design pattern
for event handling in which long
running activities are running in an
asynchronous part. A completion
handler is called after the
asynchronous part has terminated.

Wikipedia, https://en.wikipedia.org/wiki/Proactor_pattern

Enter boost.asio

◦ Written by Christopher Kohlhoff
◦ Part of boost since 2005
◦ Provides infrastructure for asynchronous

I/O with emphasis on networking.
◦ Extensible for any other kind of I/O
◦ Handles only low-level communication
◦ There’s also a non-boost variant, called

simply asio

Getting Started

int main()
{
 asio::io_service service;

 asio::deadline_timer timer(service, boost::posix_time::seconds(3));

 timer.async_wait([](auto err) {
 std::cout << timestamp << ": Timer expired!\n";
 });

 std::cout << timestamp << ": Calling run\n";
 service.run();
 std::cout << timestamp << ": Done\n";
}

simple_timer

Getting Started

ASIO Basics

I/O Object I/O Service

boost::asio::io_serviceboost::asio::deadline_timer

● Represents an I/O request
● Provides a completion

handler

● A “main loop”
● Waits for I/O operation to

complete
● Invokes the completion

handler

An application may have multiple I/O
services, but each I/O object is attached to
one I/O service exactly.

Completion Order

int main()
{
 asio::io_service service;

 asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
 asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

 timer1.async_wait([](auto err) {
 std::cout << timestamp << ": Timer 1 expired!\n";
 });

 timer2.async_wait([](auto err) {
 std::cout << timestamp << ": Timer 2 expired!\n";
 });

 std::thread main_loop([&]() {
 std::cout << timestamp << ": Starting io_service\n";
 service.run();
 });
 main_loop.join();
}

single_thread

Completion Order

Completion Order

I/O Service

The I/O service picks a completion handler
from the queue and executes it.

Completion
Queue

Timer 1

Timer 2

Execution
Order

Multiple Threads

int main()
{
 asio::io_service service;

 asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
 asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

 timer1.async_wait([](auto err) {
 std::cout << timestamp << ": Timer 1 expired!\n";
 });

 timer2.async_wait([](auto err) {
 std::cout << timestamp << ": Timer 2 expired!\n";
 });

 // Invoke 2 threads for processing completion handlers
 std::thread main_loop1([&]() { service.run(); });
 std::thread main_loop2([&]() { service.run(); });

 main_loop1.join();
 main_loop2.join();
}

multiple_threads

Multiple Threads

Completion Order

I/O Service

Multiple threads can be attached to an I/O
service to create a thread pool. Whenever a
handler is ready, one of the threads will pick
it up and execute it.

Completion
Queue

Timer 1

Timer 2

Thread 1

Thread 2

Strands
int main()
{
 asio::io_service service;
 asio::io_service::strand strand(service);

 asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
 asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

 timer1.async_wait(strand.wrap([](auto err) {
 std::cout << timestamp << ": Timer 1 expired!\n";
 }));

 timer2.async_wait(strand.wrap([](auto err) {
 std::cout << timestamp << ": Timer 2 expired!\n";
 }));

 // Invoke 2 threads for processing completion handlers
 std::thread main_loop1([&]() { service.run(); });
 std::thread main_loop2([&]() { service.run(); });

 main_loop1.join();
 main_loop2.join();
}

strand

Strands
int main()
{
 asio::io_service service;
 asio::io_service::strand strand(service);

 asio::deadline_timer timer1(service, boost::posix_time::seconds(3));
 asio::deadline_timer timer2(service, boost::posix_time::seconds(3));

 timer1.async_wait(strand.wrap([](auto err) {
 std::cout << timestamp << ": Timer 1 expired!\n";
 }));

 timer2.async_wait(strand.wrap([](auto err) {
 std::cout << timestamp << ": Timer 2 expired!\n";
 }));

 // Invoke 2 threads for processing completion handlers
 std::thread main_loop1([&]() { service.run(); });
 std::thread main_loop2([&]() { service.run(); });

 main_loop1.join();
 main_loop2.join();
}

strand

Strands

Strands

I/O Service

Strand is a synchronization mechanism. Only
one compl. Handler, wrapped by a strand
will be executed in any given time.

Thread Pool

Completion Handlers
wrapped by a strand

Execute Serially

Networking with boost::asio

Networking with boost::asio

◦ Boost::asio is first and foremost a
networking library.

◦ Provides abstractions for common
network related objects:
▫ Sockets
▫ Addresses
▫ Name resolution
▫ Buffers

◦ Also, built-in serial port support

Example: Asynchronous HTTP GET

int main()
{
 tcp::resolver::query q{ "theboostcpplibraries.com", "80" };
 resolv.async_resolve(q, resolve_handler);

 ioservice.run();
}

First, we have to resolve the address.
We have a
boost::asio::tcp::resolver object to
handle that.

Example: Asynchronous HTTP GET

void resolve_handler(const boost::system::error_code &ec,
 tcp::resolver::iterator it)
{
 if (!ec)
 tcp_socket.async_connect(*it, connect_handler);
}

When the address is resolved, the
resolve_handler function will be
executed.
If it completed without errors, we can
try to connect using a
boost::asio::tcp_scoket

Example: Asynchronous HTTP GET

void connect_handler(const boost::system::error_code &ec)
{
 if (!ec)
 {
 std::string r =
 "GET / HTTP/1.1\r\nHost: theboostcpplibraries.com\r\n\r\n";
 write(tcp_socket, buffer(r));
 tcp_socket.async_read_some(buffer(bytes), read_handler);
 }
}

The connect_handler function will be
called when the connection is ready.
We write the request (synchronously)
then issue an asynchronous read
request.

Example: Asynchronous HTTP GET

std::array<char, 4096> bytes;

void connect_handler(const boost::system::error_code &ec)
{
 if (!ec)
 {
 std::string r =
 "GET / HTTP/1.1\r\nHost: theboostcpplibraries.com\r\n\r\n";
 write(tcp_socket, buffer(r));
 tcp_socket.async_read_some(buffer(bytes), read_handler);
 }
}

A boost::asio::buffer object wraps
the actual buffer in memory. It must
be valid across the whole scope of
the read.

Example: Asynchronous HTTP GET

void read_handler(const boost::system::error_code &ec,
 std::size_t bytes_transferred)
{
 if (!ec)
 {
 std::cout.write(bytes.data(), bytes_transferred);
 tcp_socket.async_read_some(buffer(bytes), read_handler);
 }
 else
 std::cout << "End of stream" << std::endl;
}

The read_handler function will be
called when data has arrived.
It the re-issues the read request until
no more data is available.

This is not a
recursion!

Example: Asynchronous HTTP GET

Boost.asio and Networking-TS

◦ Networking TS is a broad scope
endeavor to standardize
networking in C++

◦ It has both sync & async semantics
◦ Async is heavily based on

boost::asio
◦ It also borrows concepts such as

buffers
◦ Change in names (So we have something new

to learn)

Boost.asio and Networking-TS

◦ Since boost 1.66.0, compatibility
headers are provided

◦ See here

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/net_ts.html

Asynchronous file I/O

It is possible to do asynchronous file
I/O with boost::asio

It is possible to do asynchronous file
I/O with boost::asio

https://docs.google.com/file/d/1oEn39a37G7TVOWVU2j3MhqLxuXdyfLmk/preview

Asynchronous File I/O

◦ Currently, File I/O is not supported
in a platform independent manner.

◦ Windows uses OVERLAPPED I/O
requests.

◦ Posix is a mess.

Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
 OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
 NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

 GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
 FALSE);

...
}

 });

ioservice.run();

Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
 OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
 NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

 GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
 FALSE);

...
}

 });

ioservice.run();

Create a file with FILE_FLAG_OVERLAPPED

Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
 OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
 NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

 GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
 FALSE);

...
}

 });

ioservice.run();

Issue an overlapped I/O action, providing an OVERLAPPED
structure and an event.

Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
 OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
 NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

 GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
 FALSE);

...
}

 });

ioservice.run();

Create a boost::asio::windows::object_handle object that
binds the I/O service to the event handle

Asynchronous File I/O In Windows

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
 OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED,
 NULL);

OVERLAPPED overlapped;
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};

obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {
...

 GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,
 FALSE);

...
}

 });

ioservice.run();

Specify a function to receive the result or the error code

Asynchronous File I/O In POSIX

 io_service ioservice;

 posix::stream_descriptor stream{ioservice, STDOUT_FILENO};
 auto handler = [](const boost::system::error_code&, std::size_t) {
 std::cout << ", world!\n";
 };
 async_write(stream, buffer("Hello"), handler);

 ioservice.run();

◦ The basic type here is
posix::stream_descriptor.

◦ It’s a wrapper around
platform-specific file descriptor

◦ Provide async stream semantics

Learning More

Asynchronous File I/O

◦ YouTube, talks by Michael Caisse
and others

◦ Nice, extensive getting started
https://theboostcpplibraries.com/boost.asio

◦ Old, but covers things that are not
usually covered
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started
-with-boostasio/

◦ Boost.asio official documentation
◦ RTFC

https://theboostcpplibraries.com/boost.asio
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started-with-boostasio/
https://www.gamedev.net/blogs/entry/2249317-a-guide-to-getting-started-with-boostasio/

