O

C4GC: Concurrency

DMITRY DANILOV




Why use concurrency?

= Using concurrency for separation of
concerns (classic example of GUI and
worker threads)

= Using concurrency for performance:
* Task parallelism — divide tasks into parts
and run each 1n parallel

* Data parallelism — performing the same
operation on multiple sets of data
concurrently




CP.1: Assume that your code will run as a part of multi-threaded

program

We can’t be sure that concurrency 1sn’t used now or will be used sometime in the future. Code
gets reused. Libraries using threads may be used from other parts of the program.

Example:
The function works perfectly 1n a single-threaded environment but 1n a multi-threaded
environment the two static variables result in data races!

double cached computation(double x) {
static double cached x = 0.0;
static double cached result = COMPUTATION OF ZERO;
1f (cached x == x) return cached result;
double result = computation(x);
cached x = x;
cached result = result;
return result:




Ways to fix the 1ssue:

" Delegate concurrency concerns upwards to the caller
= Mark the static variables as thread local (which might make caching less effective)
* Implement concurrency control, for example, protecting the two static variables with
a static lock (which might reduce performance)
= Refuse to build and/or run in a multi-threaded environment
" Provide two implementations(for example, a template parameter), one to be used 1n

single-threaded environments and the other one for multi-threaded environments' use




CP.22: Never call unknown code while holding a lock(e.g., a callback)

If you don’t know what a piece of code does, you are risking deadlock:

Example:

void Observable::change() {

lock guard<mutex> lock {mutex};
//do something
_observer->onUpdate(this);

//do something

}

If you don’t know what onUpdate does, 1t may call Observable: : change (indirectly)
and cause a deadlock on mutex.




Ways to fix the 1ssue:

We can avoid dead locks by using recursive mutex in Observable: :change.

Example:

vold Observable: :change() {

lock guard<recursive mutex> lock {mutex};
//do something

_observer->onUpdate(this);

//do something




CP.25: Prefergsl::joining thread over std::thread

Detached threads are hard to monitor. It 1s harder to ensure absence of errors
in detached threads (and potentially detached threads).

Example:

void f() { std::cout << "Hello "; }

struct F {
vold operator()() { std::cout << "parallel world "; }

&

int main() {
std: :thread tl1{f}; // Tf() executes 1in separate thread
std::thread t2{F()}; // F()() executes in separate thread

} // spot the bugs




Ways to fix the 1ssue:

A gsl::jolning thread is a thread that joins automatically at the end of 1ts
scope.

Example:

void f() { std::cout << "Hello ": }

struct F {
vold operator()() { std::cout << "parallel world "; }

¥

int main() {
gsl::joining thread tl1l{f}; // T() executes 1n separate thread
gsl::joining thread t2{F()}; // F()() executes in separate thread

} // both threads are joined on the end of the scope




CP.26: Don’tdetach() a thread

A typical use of detach():

Example:

vold heartbeat():

vold use() {
std::thread t(heartbeat); // don't join;

// heartbeat 1s meant to run forever
t.detach():

How do we monitor the detached
thread to see i1f 1t 1s alive?

Something might go wrong with
the heartbeat, and losing a
heartbeat can be very serious 1n a
system for which 1t 1s needed.




CP.26: Don’tdetach() a thread

An alternative, and usually superior solution 1s to control 1ts lifetime by placing it
in a scope outside 1ts point of creation (or activation). For example:

vold heartbeat():

gsl::joining thread t(heartbeat); // heartbeat 1s meant to run "forever"

Sometimes, we need to separate the point of creation from the point of ownership:

vold heartbeat();
unique ptr<gsl::joining thread> tick tock {nullptr};

vold use() {

// heartbeat 1s meant to run as long as tick tock lives
tick tock = make unique<gsl::joining thread>(heartbeat);

}




Why use concurrency??? .. Alternatives

* Think of libraries/frameworks providing higher
level of abstraction:
* Intel® Thread Building Blocks
* Microsoft® Parallel Patterns Library
* OpenMP

* Think of threads (or even separate processes)
communicating via IPC(message queues), file
system events, sockets, etc.

* Go-style concurrency in C(libdill && libmill)




Q & A SESSION

THANKS FOR LISTENING

Q « A

@ LINKEDIN/DDANILOV 9 DMITRY.B.DANILOV@GMAIL.COM




