
C4GC: Concurrency
DMITRY DANILOV



Why use concurrency?

§ Using concurrency for separation of 
concerns (classic example of GUI and 
worker threads)

§ Using concurrency for performance:
• Task parallelism – divide tasks into parts 

and run each in parallel

• Data parallelism – performing the same 
operation on multiple sets of data 
concurrently



NUMBERED POINTSCP.1: Assume that your code will run as a part of multi-threaded 
program

double cached_computation(double x) {
static double cached_x = 0.0;
static double cached_result = COMPUTATION_OF_ZERO;
if (cached_x == x) return cached_result;
double result = computation(x);
cached_x = x;
cached_result = result;
return result;

}

We can’t be sure that concurrency isn’t used now or will be used sometime in the future. Code 
gets reused. Libraries using threads may be used from other parts of the program.

Example:
The function works perfectly in a single-threaded environment but in a multi-threaded 
environment the two static variables result in data races!



§ Delegate concurrency concerns upwards to the caller

§ Mark the static variables as thread_local (which might make caching less effective)

§ Implement concurrency control, for example, protecting the two static variables with 

a static lock (which might reduce performance)

§ Refuse to build and/or run in a multi-threaded environment

§ Provide two implementations(for example, a template parameter), one to be used in 

single-threaded environments and the other one for multi-threaded environments' use

Ways to fix the issue:



Why use concurrency?CP.22: Never call unknown code while holding a lock(e.g., a callback)

If you don’t know what a piece of code does, you are risking deadlock:

Example:

If you don’t know what onUpdate does, it may call Observable::change (indirectly) 
and cause a deadlock on mutex.

void Observable::change() {

lock_guard<mutex> lock {mutex};
//do something
_observer->onUpdate(this);
//do something

}



We can avoid dead locks by using recursive_mutex in Observable::change.

Example:

void Observable::change() {

lock_guard<recursive_mutex> lock {mutex};
//do something
_observer->onUpdate(this);
//do something

}

Ways to fix the issue:



Why use concurrency?

Detached threads are hard to monitor. It is harder to ensure absence of errors 
in detached threads (and potentially detached threads).

Example:

Why use concurrency?CP.25: Prefer gsl::joining_thread over std::thread

void f() { std::cout << "Hello "; }

struct F {
void operator()() { std::cout << "parallel world "; }

};

int main() {
std::thread t1{f}; // f() executes in separate thread
std::thread t2{F()}; // F()() executes in separate thread

} // spot the bugs



Why use concurrency?

A gsl::joining_thread is a thread that joins automatically at the end of its 
scope.

Example:

Why use concurrency?Ways to fix the issue:

void f() { std::cout << "Hello "; }

struct F {
void operator()() { std::cout << "parallel world "; }

};

int main() {
gsl::joining_thread t1{f}; // f() executes in separate thread
gsl::joining_thread t2{F()}; // F()() executes in separate thread

} // both threads are joined on the end of the scope



A typical use of detach():

Example:

void heartbeat();

void use() {
std::thread t(heartbeat); // don't join;
// heartbeat is meant to run forever
t.detach();

}

How do we monitor the detached 
thread to see if it is alive?

Something might go wrong with 
the heartbeat, and losing a 
heartbeat can be very serious in a 
system for which it is needed.

Why use concurrency?Why use concurrency?CP.26: Don’t detach() a thread



Why use concurrency?

An alternative, and usually superior solution is to control its lifetime by placing it 
in a scope outside its point of creation (or activation). For example:

Why use concurrency?CP.26: Don’t detach() a thread

void heartbeat();

gsl::joining_thread t(heartbeat); // heartbeat is meant to run "forever"

Sometimes, we need to separate the point of creation from the point of ownership:

void heartbeat();
unique_ptr<gsl::joining_thread> tick_tock {nullptr};

void use() {
// heartbeat is meant to run as long as tick_tock lives
tick_tock = make_unique<gsl::joining_thread>(heartbeat);

}



Why use concurrency??? .. Alternatives

• Think of libraries/frameworks providing higher 
level of abstraction:
• Intel® Thread Building Blocks
• Microsoft® Parallel Patterns Library
• OpenMP

• Think of threads (or even separate processes) 
communicating via IPC(message queues), file 
system events, sockets, etc.

• Go-style concurrency in C(libdill && libmill)



Q A&

THANKS FOR LISTENING

Q & A SESSION

DMITRY.B.DANILOV@GMAIL.COMLINKEDIN/DDANILOV


