
Valgrind testing suite
Rafi wiener

• Valgrind – pronounced val (short for value) grind (pronounced with a short ’i’ -- ie. "grinned" (rhymes with

"tinned")

• Valgrind is an instrumentation framework for building dynamic analysis tools. It comes with a set of tools

that debugs, profiles, and more to improve C\C++ applications

• It was developed by Julian Seward at/around Cambridge University, UK

• open source

• works on x86, AMD64, PPC code

• easy to run

• Overhead is the problem

• 5-10x slowdown without any instrumentation

About

• Valgrind runs the application on a synthetic CPU. As new code is executed for the first

time, Valgrind’s core hands the code to the selected tool (memcheck, race…). Your code

is modified by these tools by adding specific instructions necessary for the tool to

perform its job. These tools intercept system calls and record information before and

after those calls execute. Afterwards, the tool hands the result back to the core which

coordinates the continued execution of this instrumented code.

• Valgrind simulates every single instruction your program executes. Because of this, the

active tool checks, or profiles, not only the code in your application but also in all

supporting dynamically-linked libraries, including the C library, graphical libraries, and

so on.

How does valgrind work

• C\C++ are well known to be difficult languages for writing code. Most issues are due to the memory

management. Contrary to Java\Python and other high level languages with a garbage collector, in

C\C++ it’s the programmer’s work to verify memory is valid and accessed correctly.

• C\C++ is famous for producing undefined behaviors due to invalid instructions coded by the developer.

• Bugs can happen because an uninitialized value, and debugging is frustrating and can take hours.

• Reading a non-allocated memory address, or reading memory after having freed it will not always crash

your application, and such errors are difficult to find.

• Besides memory, there are other resources that must be closed after they are no longer required, or an

application can run out of resources, such as file descriptors, for example.

• But Valgrind is more then a debugger. It can help you find potential deadlocks by showing you lock

acquisition, pointing you to where data was changed, with no lock protecting it.

• Valgrind can also show you memory usage of each part of the application and track memory usage over

time,

Goal

• Valgrind is a runtime analysis tool, unlike cppcheck\parasoft here you must run the

buggy code in order to detect issues.

• If you are using other libraries, Valgrind will warn you about issues found there, errors

you might not able to, or don’t want to fix.

• Valgrind can’t detect out-of-range reads or writes to stack\global arrays.

• When HW is involved, Valgrind can report false positive issues.

• If HW maps memory, Valgrind is not aware about the HW.

• Valgrind is slow and can cause your application to choose different paths.

• E.g. application that after few μs consider something as timeout

Limitations

• Compile your application with debug symbols

• The manual says that it is better to compile without optimizations, although I always

compiled with and didn’t notice any issue.

• That’s it!!!

• For a basic run, just run the program as follows:

• Valgrind [your application] [your applications args]

• By default, the memory analysis tool will run.

Basic run - preparation

• --log-file – prints output to file instead of the screen

• --trace-children – tracks a new process started with the exec system call

• --track-fds – tracks non-closed file descriptors

• --suppressions – suppression file to use

• --read-var-info – prints more precise error messages

• --track-origin – tracks the origin of uninitialized value, by default Valgrind will warn only when data is used

• Very expensive and very useful

• --show-mismatched-frees – reports allocating with new, freeing with free, and similar undefined behaviors.

• --show-leak-kinds – (to be explained in slides that follow)

Useful flags

There are several types of memory loss, and some are considered OK.

• Definitely loss – This means that no pointer to the block can be found. The block is classified as

"lost" because the programmer could not possibly have freed it at program exit since no pointer

to it exists. This is likely a symptom of having lost the pointer at some earlier point in the

program. Such cases should be fixed by the programmer.

• Indirectly lost – This means that your program is leaking memory in a pointer-based structure.

(E.g., if the root node of a binary tree is "definitely lost", all the children will be "indirectly lost".)

If you fix the "definitely lost" leaks, the "indirectly lost" leaks should go away.

• Possibly lost – This means that your program is leaking memory, unless you're doing unusual

things with pointers, such as causing them to point to the middle of an allocated block.

• Still reachable memory - A pointer or chain of start-pointers to the block has been found. Since

the block is still being pointed at, the programmer could, at least in principle, have freed it

before program exit. "Still reachable" blocks are very common and are arguably not a

problem. So, by default, Memcheck won’t report such blocks individually.

Leak kinds

PID

int run() {
int *arr = new int[10];

}

int main() {
run();
return 0;

}

==639== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==639== at 0x4A065BA: operator new[](unsigned long) (vg_replace_malloc.c:264)
==639== by 0x4005A9: run() (in /tmp/a.out)
==639== by 0x4005B8: main (in /tmp/a.out)

Memory leak example

• Invalid write happens when writing data to places

your not supposed to

Invalid write
int run() {

int *arr = new int[10];
arr[10] = 1;

}

int main() {
run();
return 0;

}

==1752== Invalid write of size 4
==1752== at 0x4005B6: run() (in /tmp/a.out)
==1752== by 0x4005C6: main (in /tmp/a.out)
==1752== Address 0x4c27068 is 0 bytes after a block of size 40 alloc'd
==1752== at 0x4A065BA: operator new[](unsigned long) (vg_replace_malloc.c:264)
==1752== by 0x4005A9: run() (in /tmp/a.out)
==1752== by 0x4005C6: main (in /tmp/a.out)

• Invalid read error happens when application reads from a places it’s not supposed to

e.g. deleted memory. Also reading from any address you didn’t allocated can cause this

error

Invalid read

int main() {
int *a = new int[10];
a[0] = 10;
delete[] a;
printf("%d\n", a[0]);
return 0;

}

==8097== Invalid read of size 4
==8097== at 0x4006E4: main (in /tmp/vma/vma/a.out)
==8097== Address 0x5a15040 is 0 bytes inside a block of size 40 free'd
==8097== at 0x4C2963D: operator delete[](void*) (vg_replace_malloc.c:621)
==8097== by 0x4006DF: main (in /tmp/vma/vma/a.out)
==8097== Block was alloc'd at
==8097== at 0x4C288A8: operator new[](unsigned long) (vg_replace_malloc.c:423)
==8097== by 0x4006BE: main (in /tmp/vma/vma/a.out)

• Sending uninitialized memory to system call

Syscall param points to uninitialized byte(s)

epoll_event ev;
ev.events = EPOLLIN | EPOLLPRI;
ev.data.fd = fd;
int ret = epoll_ctl(m_epfd, operation, fd, &ev);

==31283== Syscall param epoll_ctl(event) points to uninitialised byte(s)
==31283== at 0x5EC0CBA: epoll_ctl (in /usr/lib64/libc-2.17.so)
==31283== by 0x4F16835: wakeup_pipe::do_wakeup() (wakeup_pipe.cpp:98)
==31283== by 0x4EB04EA: event_handler_manager::register_timer_event(int,
timer_handler*, timer_req_type_t, void*, timers_group*) (event_handler_manager.cpp:106)
==31283== by 0x4F282B9: stats_data_reader::register_to_timer()
(stats_publisher.cpp:137)
==31283== by 0x4F23BE2: do_global_ctors_helper (main.cpp:793)

epoll_event ev = { 0 };

• It’s important to understand that your program can copy around junk (uninitialized) data as much

as it likes. Memcheck observes this, keeping track of the data, without complaining. A complaint

is issued only when your program attempts to make use of the uninitialized data in a way that

might affect your program’s externally-visible behavior. In this example, x is uninitialized.

Memcheck observes the value being passed to _IO_printf and then to _IO_vfprintf, but makes

no comment. However, _IO_vfprintf has to examine the value of x so it can turn it into the

corresponding ASCII string, and it is at this point that Memcheck complains.

Conditional jump or move depends on uninitialized value
int main() {

int x;
printf ("x = %d\n", x);

}

Conditional jump or move depends on uninitialised value(s)
at 0x402DFA94: _IO_vfprintf (_itoa.h:49)
by 0x402E8476: _IO_printf (printf.c:36)
by 0x8048472: main (tests/manuel1.c:8)

• Invalid free can happen when

• You double free the same address

• Deallocate with free, memory allocated with new

• Use delete instead of delete[] or vice versa

• Remember In c++

• If allocated with malloc, calloc, realloc, valloc or memalign, you must deallocate with free.

• If allocated with new, you must deallocate with delete.

• If allocated with new[], you must deallocate with delete[].

Invalid free

Mismatched free() / delete / delete []
at 0x40043249: free (vg_clientfuncs.c:171)
by 0x4102BB4E: QGArray::~QGArray(void) (tools/qgarray.cpp:149)
by 0x4C261C41: PptDoc::~PptDoc(void) (include/qmemarray.h:60)
by 0x4C261F0E: PptXml::~PptXml(void) (pptxml.cc:44)
Address 0x4BB292A8 is 0 bytes inside a block of size 64 alloc’d
at 0x4004318C: operator new[](unsigned int) (vg_clientfuncs.c:152)
by 0x4C21BC15: KLaola::readSBStream(int) const (klaola.cc:314)
by 0x4C21C155: KLaola::stream(KLaola::OLENode const *) (klaola.cc:416)
by 0x4C21788F: OLEFilter::convert(QCString const &) (olefilter.cc:272)

• Overlap between source and destination in memcpy, strcpy, strcat and more

• Fishy memory size to allocate

MISC.

==27492== Source and destination overlap in memcpy(0xbffff294, 0xbffff280, 21)
==27492== at 0x40026CDC: memcpy (mc_replace_strmem.c:71)
==27492== by 0x804865A: main (overlap.c:40)

==32233== Argument ’size’ of function malloc has a fishy (possibly negative) value: -3
==32233== at 0x4C2CFA7: malloc (vg_replace_malloc.c:298)
==32233== by 0x400555: foo (fishy.c:15)
==32233== by 0x400583: main (fishy.c:23)

• Although Valgrind is pretty accurate, sometimes it reports false positive. In order to filter out those well known issues,

you can run Valgrind with a suppression file.

• Suppression files are also good if you are using third party libraries that you don’t want to, or can’t, fix.

• The best way to generate suppressions is to run Valgrind with --gen-suppressions=all

Suppression file

{
[title] \\ will be used in valgrind summery report
Memcheck:Leak \\ type
match-leak-kinds: definite \\ sub type
... \\ wildcard skips object function…
fun:_ZN20net_device_table_mgr16create_new_entryEj \\ mangled name
fun:_ZN15cache_table_mgrI10ip_addressP14net_device_valE17register

}
{

rdmacm Value8 rdma_get_devices
Memcheck:Value8
...
fun:rdma_get_devices

}

• In your application you can inform Valgrind about initialized memory to prevent false positives.

• VALGRIND_MAKE_MEM_UNDEFINED(ptr, size)

• VALGRIND_MAKE_MEM_DEFINED(ptr, size)

• Other macros are available to invoke Valgrind in the middle of your application run.

• Those macro should only be used in a debug mode due do performance and not to add valgrind

dependency to the project.

Suppressing in the code

struct ibv_qp_attr qp_attr;
struct ibv_qp_init_attr qp_init_attr;
if (ibv_query_qp(qp, &qp_attr, IBV_QP_STATE, &qp_init_attr)) return -1;
VALGRIND_MAKE_MEM_DEFINED(&qp_attr, sizeof(qp_attr));
return qp_attr.qp_state;

• Run with valgrind --tool=exp-sgcheck

• SGCheck is an experimental tool for finding overruns of stack and global arrays.

• SGCheck and Memcheck are complementary: their capabilities do not overlap.

Memcheck performs bounds checks and use-after-free checks for heap arrays. It also

finds uses of uninitialized values created by heap or stack allocations. But it does not

perform bounds checking for stack or global arrays.

• SGCheck, on the other hand, does bounds-checking for stack or global arrays, but it

doesn't do anything else.

• Experimental tool is still under development

Sgcheck

• Run with valgrind –tool=helgrind

• Helgrind is a Valgrind tool for detecting synchronization errors in C, C++ (and Fortran)

programs that use the POSIX pthreads threading primitives

• Helgrind detects:

• Misuses of the POSIX pthreads API.

• Potential deadlocks arising from lock ordering problems.

• Data races - accessing memory without adequate locking or synchronization.

• If you want to test C++11 threads you need to add macros

• It doesn’t recognize atomic and futex.

• It is very slow - up to 100x slower.

Helgrind

• Misuses of the POSIX pthreads API.

• unlocking an invalid mutex,

• unlocking a not-locked mutex,

• destroying an invalid or a locked mutex

• recursively locking of a non-recursive mutex

• waiting on an uninitialized pthread barrier

• …

Helgrined – api misuse

Thread #1 unlocked a not-locked lock at 0x7FEFFFA90
at 0x4C2408D: pthread_mutex_unlock (hg_intercepts.c:492)
by 0x40073A: nearly_main (tc09_bad_unlock.c:27)
by 0x40079B: main (tc09_bad_unlock.c:50)
Lock at 0x7FEFFFA90 was first observed
at 0x4C25D01: pthread_mutex_init (hg_intercepts.c:326)
by 0x40071F: nearly_main (tc09_bad_unlock.c:23)
by 0x40079B: main (tc09_bad_unlock.c:50)

• Helgrind monitors the order in which threads acquire locks. This allows it to detect potential deadlocks which could

arise from the formation of cycles of locks. Detecting such inconsistencies is useful because, while deadlocks are usually

obvious, potential deadlocks may never be discovered during testing and could later lead to hard-to-diagnose in-

service failures.

• Imagine some shared resource R, which, for whatever reason, is guarded by two locks, L1 and L2, which must both be held when

R is accessed.

• Suppose a thread acquires L1, then L2, and proceeds to access R. The implication of this is that all threads in the program must

acquire the two locks in the order first L1 then L2. Not doing so risks deadlock.

Helgrind - deadlock

Thread #1: lock order "0x7FF0006D0 before 0x7FF0006A0" violated
Observed (incorrect) order is: acquisition of lock at 0x7FF0006A0

at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x400825: main (tc13_laog1.c:23)

followed by a later acquisition of lock at 0x7FF0006D0
at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x400853: main (tc13_laog1.c:24)

Required order was established by acquisition of lock at 0x7FF0006D0
at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x40076D: main (tc13_laog1.c:17)

followed by a later acquisition of lock at 0x7FF0006A0
at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x40079B: main (tc13_laog1.c:18)

• Helgrind builds a directed graph indicating the order in which locks have been acquired in the past. When a thread acquires a new

lock, the graph is updated, and then it is checked to see if it contains a cycle. The presence of a cycle indicates that a potential

deadlock involving the locks exists in the cycle. In general, Helgrind will choose two locks involved in the cycle and show you how their

acquisition ordering has become inconsistent. It does this by showing the program point that first defined the ordering, and then the

program point which later violated it. Here is a simple example involving just two locks:

Helgrind - deadlock

Thread #1: lock order "0x7FF0006D0 before 0x7FF0006A0" violated
Observed (incorrect) order is: acquisition of lock at 0x7FF0006A0

at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x400825: main (tc13_laog1.c:23)

followed by a later acquisition of lock at 0x7FF0006D0
at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x400853: main (tc13_laog1.c:24)

Required order was established by acquisition of lock at 0x7FF0006D0
at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x40076D: main (tc13_laog1.c:17)

followed by a later acquisition of lock at 0x7FF0006A0
at 0x4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x40079B: main (tc13_laog1.c:18)

Data race example
int var = 0;
void* child_fn (void* arg) {

var++; /* Unprotected relative to parent */ /* line 6 */
return NULL;

}
int main (void) {

pthread_t child;
pthread_create(&child, NULL, child_fn, NULL);
var++; /* Unprotected relative to child */ /* line 13 */
pthread_join(child, NULL);
return 0;

}

Possible data race during read of size 4 at 0x601038 by thread #1
Locks held: none
at 0x400606: main (simple_race.c:13)
This conflicts with a previous write of size 4 by thread #2
Locks held: none
at 0x4005DC: child_fn (simple_race.c:6)
by 0x4C29AFF: mythread_wrapper (hg_intercepts.c:194)
by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
by 0x511C0CC: clone (in /lib64/libc-2.8.so)
Location 0x601038 is 0 bytes inside global var "var"
declared at simple_race.c:3

• DRD is an experimental thread analyzer. It does everything that helgrind does, but it

also comes with some extra analysis tools.

• Run it with valgrind –tool=drd

• First you should clean all memory issues in your code

• It has better support for Boost\C++ threads

• http://valgrind.org/docs/manual/drd-manual.html#drd-manual.C++11

DRD

http://valgrind.org/docs/manual/drd-manual.html#drd-manual.C++11

• Basically locking is not expensive. What’s expensive is waiting to acquire the lock, AKA lock contention.

• A lock that has been “fought” over can cause serious degradation in time critical application.

• Sometimes this can be solved rewriting those critical sections, either with a single thread, or with several

tasks, or by locking and unlocking the section several times.

• Drd can detect locks with high contention with the arguments

• --exclusive-threshold=<n> - write lock held more then n milis

• --shared-threshold=<n> - read lock held more then n milis

Lock contention

==10668== Acquired at:
==10668== at 0x4C267C8: pthread_mutex_lock (drd_pthread_intercepts.c:395)
==10668== by 0x400D92: main (hold_lock.c:51)
==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 10 ms).
==10668== at 0x4C26ADA: pthread_mutex_unlock (drd_pthread_intercepts.c:441)
==10668== by 0x400DB5: main (hold_lock.c:55)

• This tool measures how much heap memory your program uses. This includes both the

used space, and the extra bytes allocated for book-keeping and alignment purposes. It

can also measure the size of your program's stack(s)

• It’s good for testing long running applications to verify they don’t “forget” to free

memory after it’s no longer used.

• Think about an stl map that always grow…

• It is important to note that Massif not only tells you how much heap memory your

program is using, but it also gives you very detailed information to show you which parts

of your program are responsible for allocating the heap memory.

Massif – heap profiler

• Run with valgrind –tool=massif …

• Data is written either to your chosen file (with --massif-out-file) or massif.out.[pid]

• To see the results run ms_print [file]

Massif

• : standard snapshot

• @ detailed snapshot

• # peek consumption

Massif -graph

Massif raw data
--
n time(i) total(B) useful-heap(B) extra-heap(B) stacks(B)

--
23 302,595,069 528,600 528,478 122 0
24 302,595,113 463,072 462,965 107 0
25 302,595,146 463,032 462,933 99 0
26 302,595,185 397,504 397,420 84 0
27 302,595,218 397,464 397,388 76 0
28 302,596,530 393,360 393,292 68 0
29 302,596,567 262,328 262,280 48 0
30 302,596,629 262,224 262,192 32 0
31 302,596,668 262,200 262,176 24 0
32 302,596,701 144 128 16 0
88.89% (128B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->66.67% (96B) 0x46B18F: _GLOBAL__sub_I__Z9print_logPKcP8fds_data (new_allocator.h:104)
| ->66.67% (96B) 0x6FA21B: __libc_csu_init (in /usr/local/bin/sockperf)
| ->66.67% (96B) 0x5A8CAC3: (below main) (in /usr/lib64/libc-2.17.so)
|
->22.22% (32B) 0x4E2C61E: _dlerror_run (in /usr/lib64/libdl-2.17.so)
| ->22.22% (32B) 0x4E2C126: dlsym (in /usr/lib64/libdl-2.17.so)
| ->22.22% (32B) 0x6F9BEF: vma_set_func_pointers_internal(void*) (vma-redirect.cpp:122)
| ->22.22% (32B) 0x6F6EFB: set_defaults() (SockPerf.cpp:2214)
| ->22.22% (32B) 0x46B27A: main (SockPerf.cpp:3295)
|
->00.00% (0B) in 1+ places, all below ms_print's threshold (01.00%)

• Run with valgrind --tool=callgrind

• Callgrind is a profiling tool that records the call history among functions in a program's

run as a call-graph. By default, the collected data consists of the number of instructions

executed, their relationship to source lines, the caller/callee relationship between

functions, and the numbers of such calls. Optionally, cache simulation and/or branch

prediction (similar to Cachegrind) can produce further information about the runtime

behavior of an application.

Callgrind

• Cachegrind simulates how your program interacts with a machine's cache hierarchy and

branch predictor.

• Cachegrind gathers the following statistics:

• cache reads data and instructions

• cache read misses data and instructions

• cache writes data and instructions

• cache write misses data and instructions

• Conditional branches executed\mispredicted

• Indirect branches executed\mispredicted

• You can compare different runs with cg_diff to understand how your changes influences

the cache

Cachegrind- cache and branch-prediction

• Compile your code with regular optimizations and debug symbol

• use cg_merge to merge runs from different run

Cachegrind

--
Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw file:function
--
8,821,482 5 5 2,242,702 1,621 73 1,794,230 0 0 getc.c:_IO_getc
5,222,023 4 4 2,276,334 16 12 875,959 1 1 concord.c:get_word
2,649,248 2 2 1,344,810 7,326 1,385 . . . vg_main.c:strcmp
2,521,927 2 2 591,215 0 0 179,398 0 0 concord.c:hash
2,242,740 2 2 1,046,612 568 22 448,548 0 0 ctype.c:tolower

Ir-instruction read , I1mr – read miss, ILmr - instruction read miss
DR – memory read, D1mr – read miss, Dlmr- data read miss,
DW – memory write, D1wm – write miss, DLmw – data write miss

Cg_annotate – source file view
--

-- User-annotated source: concord.c cg_annotate <filename> concord.c
--
Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw

. void init_hash_table(char *file, Word_Node *table[])
3 1 1 . . . 1 0 0 {
. FILE *file_ptr;
. Word_Info *data;
1 0 0 . . . 1 1 1 int line = 1, i;
.
5 0 0 . . . 3 0 0 data = (Word_Info *) create(sizeof(Word_Info));
.

4,991 0 0 1,995 0 0 998 0 0 for (i = 0; i < TABLE_SIZE; i++)
3,988 1 1 1,994 0 0 997 53 52 table[i] = NULL;

.

. /* Open file, check it. */
6 0 0 1 0 0 4 0 0 file_ptr = fopen(file, "r");
2 0 0 1 0 0 . . . if (!(file_ptr)) {
. fprintf(stderr, "Couldn't open '%s'.\n", file);
1 1 1 exit(EXIT_FAILURE);
. }
.

165,062 1 1 73,360 0 0 91,700 0 0 while ((line = get_word(data, line, file_ptr)) != EOF)
146,712 0 0 73,356 0 0 73,356 0 0 insert(data->;word, data->line, table);

.
4 0 0 1 0 0 2 0 0 free(data);
4 0 0 1 0 0 2 0 0 fclose(file_ptr);
3 0 0 2 0 0 . . . }

• The line-by-line source code annotations are very useful. The best place to start is by

looking at the Ir numbers. They measure how many instructions were executed for each

line, and very useful for identifying bottlenecks.

• LL misses are typically a much bigger source of slow-downs than L1 misses. So it's worth

looking for any snippets of code with high DLmr or DLmw counts. (You can use --

show=DLmr --sort=DLmr with cg_annotate to focus just on DLmr counts). If you find any,

it's still not always easy to work out how to improve things. You need to have a

reasonable understanding of how caches work, the principles of locality, and your

program's data access patterns. Improving things may require redesigning a data

structure.

Cachegrind-improving my app

Thanks

