i i

sting suite

oronounced with a short '’ -- ie. "grinned" (rhymes with

building dynamic analysis tools. It comes with a set of tools

\C++ applications

ound Cambridge University, UK

How does valgrind work

® Valgrind runs the application on a synthetic CPU. As new code is executed for the first
time, Valgrind’s core hands the code to the selected tool (memcheck, race...). Your code
is modified by these tools by adding specific instructions necessary for the tool to
perform its job. These tools intercept system calls and record information before and
after those calls execute. Afterwards, the tool hands the result back to the core which

coordinates the continued execution of this instrumented code.

® Valgrind simulates every single instruction your program executes. Because of this, the
active tool checks, or profiles, not only the code in your application but also in all
supporting dynamically-linked libraries, including the C library, graphical libraries, and

SO On.

Godl

C\C++ are well known to be difficult languages for writing code. Most issues are due to the memory
management. Contrary to Java\Python and other high level languages with a garbage collector, in
C\C++ it’s the programmer’s work to verify memory is valid and accessed correctly.

C\C++ is famous for producing undefined behaviors due to invalid instructions coded by the developer.
Bugs can happen because an uninitialized value, and debugging is frustrating and can take hours.

Reading a non-allocated memory address, or reading memory after having freed it will not always crash
your application, and such errors are difficult to find.

Besides memory, there are other resources that must be closed after they are no longer required, or an

application can run out of resources, such as file descriptors, for example.

But Valgrind is more then a debugger. It can help you find potential deadlocks by showing you lock

acquisition, pointing you to where data was changed, with no lock protecting it.

Valgrind can also show you memory usage of each part of the application and track memory usage over

time,

> cppcheck\parasoft here you must run the

grind will warn you about issues found there, errors

t to fix.
e reads or writes to stack\global arrays.

can report false positive issues.

s not aware about the HW.

your application to choose different paths.

1s consider something as timeout

applications args]

tool will run.

e exec system call

2d value, by default Valgrind will warn only when data is used

g with new, freeing with free, and similar undefined behaviors.

es that follow)

Leak kinds

There are several types of memory loss, and some are considered OK.

Definitely loss — This means that no pointer to the block can be found. The block is classified as
“lost” because the programmer could not possibly have freed it at program exit since no pointer
to it exists. This is likely a symptom of having lost the pointer at some earlier point in the
program. Such cases should be fixed by the programmer.

Indirectly lost — This means that your program is leaking memory in a pointer-based structure.
(E.g., if the root node of a binary tree is "definitely lost", all the children will be "indirectly lost".)
If you fix the "definitely lost" leaks, the "indirectly lost" leaks should go away.

Possibly lost — This means that your program is leaking memory, unless you're doing unusual
things with pointers, such as causing them to point to the middle of an allocated block.

Still reachable memory - A pointer or chain of start-pointers to the block has been found. Since
the block is still being pointed at, the programmer could, at least in principle, have freed it
before program exit. "Still reachable" blocks are very common and are arguably not a
problem. So, by default, Memcheck won’t report such blocks individually.

definitely lost in loss record 1 of 1
new[] (unsigned long) (vg replace malloc.c:264)
/tmp/a.out)

/tmp/a.out)

int run() {

a to places , :
int *arr = new int[10];

arr[10] = 1;
}
int main() {
run();
return 0;

in /tmp/a.out)

n /tmp/a.out)

bytes after a block of size 40 alloc'd

tor new[](unsigned long) (vg replace malloc.c:264)
(in /tmp/a.out)

in /tmp/a.out)

ation reads from a places it’s not supposed to

om any address you didn’t allocated can cause this

/tmp/vma/vma/a.out)

bytes inside a block of size 40 free'd
delete[](void*) (vg _replace malloc.c:621)
/tmp/vma/vma/a.out)

new[] (unsigned long) (vg _replace_malloc.c:423)
/tmp/vma/vma/a.out)

alized byte(s)

call

epoll event ev = { 0 };

ion, fd, &ev);

tl(event) points to uninitialised byte(s)

1 ctl (in /usr/lib64/1ibc-2.17.s0)

p_pipe::do wakeup() (wakeup pipe.cpp:98)

t handler manager::register_timer_event(int,

t, void*, timers group*) (event _handler_manager.cpp:106)
s data _reader::register_to_timer()

global ctors _helper (main.cpp:793) /

Conditional jump or move depends on uninitialized value

int main() {
int x;
printf ("x = %d\n", x);

}

Conditional jump or move depends on uninitialised value(s)
at Ox402DFA94: IO vfprintf (_itoa.h:49)

by 0x402E8476: I0 printf (printf.c:36)

by 0x8048472: main (tests/manuell.c:8)

® It's important to understand that your program can copy around junk (uninitialized) data as much
as it likes. Memcheck observes this, keeping track of the data, without complaining. A complaint
is issued only when your program attempts to make use of the uninitialized data in a way that
might affect your program’s externally-visible behavior. In this example, x is uninitialized.
Memcheck observes the value being passed to _|O_printf and then to _IO_vfprintf, but makes
no comment. However, |O_vfprintf has to examine the value of x so it can turn it into the
corresponding ASCII string, and it is at this point that Memcheck complains.

/qgarray.cpp:149)
de/gmemarray.h:60)
.cc:44)

k of size 64 alloc’d

) (vg_clientfuncs.c:152)
onst (klaola.cc:314)

Node const *) (klaola.cc:416)
g const &) (olefilter.cc:272)

valloc or memalign, you must deallocate with free.
ate with delete.

ocate with delete[].

in memcpy, strcpy, strcat and more

lap in memcpy(@xbffff294, oxbffff280, 21)
eplace _strmem.c:71)
ap.c:40)

ts false positive. In order to filter out those well known issues,

ird party libraries that you don’t want to, or can't, fix.

algrind with --gen-suppressions=all

e _new_entryEj \\ mangled name
ssPl4net_device_valEl7register

about initialized memory to prevent false positives.

oke Valgrind in the middle of your application run. d)«

in a debug mode due do performance and not to add valgrin

finding overruns of stack and global arrays.

lementary: their capabilities do not overlap.
s and use-after-free checks for heap arrays. It also
reated by heap or stack allocations. But it does not

ick or global arrays.

oes bounds-checking for stack or global arrays, but it

development

chronization errors in C, C++ (and Fortran)
eading primitives

ordering problems.

t adequate locking or synchronization.

ou need to add macros

& mutex

| barrier

ed lock at Ox7FEFFFA90
nlock (hg _intercepts.c:492)
09 bad unlock.c:27)
~unlock.c:50)

st observed

init (hg_intercepts.c:326)
c09 bad unlock.c:23)
unlock.c:50)

locks. This allows it to detect potential deadlocks which could
g such inconsistencies is useful because, while deadlocks are usually

overed during testing and could later lead to hard-to-diagnose in-

whatever reason, is guarded by two locks, L1 and L2, which must both be held when

d proceeds to access R. The implication of this is that all threads in the program must

then L2. Not doing so risks deadlock.

Thread #1: lock order "Ox7FF0006DO before Ox7FFO0O6AQ" violated
Observed (incorrect) order is: acquisition of lock at ©x7FF0006A0
at Ox4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x400825: main (tcl3 laogl.c:23)
followed by a later acquisition of lock at ©Ox7FF0006D0O
at Ox4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)

Required order was established by acquisition of lock at Ox7FF0006
at Ox4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x40076D: main (tcl3 laogl.c:17)
followed by a later acquisition of lock at ©x7FF0006A0
at Ox4C2BC62: pthread_mutex_lock (hg_intercepts.c:494)
by 0x40079B: main (tc13_laogl.c:18)

by 0x400853: main (tcl3 laogl.c:24) /

N—

Helgrind - deadlock

® Helgrind builds a directed graph indicating the order in which locks have been acquired in the past. When a thread acquires a new
lock, the graph is updated, and then it is checked to see if it contains a cycle. The presence of a cycle indicates that a potential
deadlock involving the locks exists in the cycle. In general, Helgrind will choose two locks involved in the cycle and show you how their
acquisition ordering has become inconsistent. It does this by showing the program point that first defined the ordering, and then the

program point which later violated it. Here is a simple example involving just two locks:

Thread #1: lock order "Ox7FFO006DO before Ox7FFO006A0" violated
Observed (incorrect) order is: acquisition of lock at ©x7FF0006A0
at Ox4C2BC62: pthread mutex lock (hg intercepts.c:494)
by 0x400825: main (tcl3 laogl.c:23)
followed by a later acquisition of lock at ©x7FF0006D0O
at Ox4C2BC62: pthread mutex lock (hg intercepts.c:494)
by 0x400853: main (tcl3 laogl.c:24)
Required order was established by acquisition of lock at ©Ox7FF0006DO
at Ox4C2BC62: pthread mutex lock (hg intercepts.c:494)
by 0x40076D: main (tcl3 laogl.c:17)
followed by a later acquisition of lock at Ox7FF0006A0
at Ox4C2BC62: pthread mutex lock (hg intercepts.c:494)
by 0x40079B: main (tcl3 laogl.c:18)

/ /* line 6 */

, NULL);
1ild */ /* line 13 */

e 4 at 0x601038 by thread #1

of size 4 by thread #2
:6)

tercepts.c:194)
>4/1ibpthread-2.8.5s0)

olobal var "var"

does everything that helgrind does, but it

Jes in your code
+ threads

http:/ /valarind.org/docs/manucily

http://valgrind.org/docs/manual/drd-manual.html#drd-manual.C++11

2nsive is waiting to acquire the lock, AKA lock contention.
se serious degradation in time critical application.

ose critical sections, either with a single thread, or with several

tion several times.

on with the arguments
ck held more then n milis

held more then n milis

ead mutex lock (drd pthread intercepts.c:395)

(hold lock.c:51) //
ffd50 was held during 503 ms (threshold: 10 ms).
ead mutex unlock (drd pthread intercepts.c:441)
(hold lock.c:55) ﬁﬁ

ory your program uses. This includes both the
ated for book-keeping and alignment purposes. It

srogram's stack(s)

applications to verify they don’t “forget” to free

ves you very detailed information to show you which parts

ble for allocating the heap memory.

(with --massif-out-file) or massif.out.[pid]

0

|umbér of snapshots: 54

Detailed snapshots:

[10, 1s,

34,

36,

44,

49,

53 (peak).,

63,

[N R R R e R R R R eI e e R e e R R R o B

73, 83, 93]

IR R R e I I R R I e e R e R e R R v R o

p(B) extra-heap(B) stacks(B)

528,478 122 0
462,965 107 0

462,933 99)
397,420 84)
397,388 76 0
393,292 68 0
262,280 48 0
262,192 32 0
262,176 24 0
128 16 0

s) malloc/new/new[], --alloc-fns, etc.
__Z9print_logPKcP8fds_data (new_allocator.h:104)
init (in /usr/local/bin/sockpere)

ain) (in /usr/lib64/1libc-2.17.s0)

(in /usr/lib64/1ibd1-2.17.s0)
/usr/1ib64/1ibdl-2.17.s0)
unc_pointers_internal(void*) (vma-redirect.cpp:122)
aults() (SockPerf.cpp:2214)

(SockPerf.cpp:3295)

ms_print's threshold (01.00%)

ds the call history among functions in a program's
collected data consists of the number of instructions
ce lines, the caller/callee relationship between
calls. Optionally, cache simulation and/or branch

1) can produce further information about the runtime
P

164

‘Self Called Function ‘Locat
5994 0.00 (0) & 0x00000000000011e0 Id-2.1
N 50 G4 0.00 1 B 0x000000000046ba3d sockp
N 0964 0.00 1 M (below main) libc-2
Hm coc4 0.00 1 & main socky
[eloRels 0.00 1 W do_test) socky
N 5631 0.00 1 & client_handler(handler ... sockp
051 0.00 1 ®void client_handler=loR... sockp
051 0.00 1 ® void client_handler=loR... sockp
051 0.00 1 ®void client_handler=loR... sockp
B S5351 B61 1 W Client=loRecvirom, Swi... sockp
. =717 316 1567171 & sendto libvm
B 54011 11.99 1567 171 & sockinfo_udp:t(_call... libvm
W £2981 926 1567 171 ®dst_entry_udp:fast_se... libvm
W 5050 3.92 1567 171 " ring_simple:send_ring... libvm
B 4270 3.94 1567171 ® gp_magr:send(ibv_exp... libvm
B 3422030095 1567172 ®gp_mgr_eth_mlx5:sen... libvm

3.67 0.08 24494 W cq_mgr_mix5:poll_and... libvm
3.59 0.03 24 487 ® cg_magr;process_t b... libvm
3.56 355 24487 "ring_simple:mem_buf... libvm
3.27 327 3135220 81 _memcpy_ssse3 _back libc-2
317 3.05 195898 M ring_simple:mem_buf... libvm
2.83 218 1567 177 ™ lock_spin_recursive:lo... libvm
272 153 1567171 & dst_entry:try_migrate_... libvm
253 0.00 1 ® bringup(int const*) socky
2.59 0.00 1 M socket libvm
253 0.00 1 M socket_internal(int, int, ... libvm
253 0.00 1 B do_global_ctors() libvm
2.29 2.29 1568 454 M pthread _mutex_lock libpth
1.85 1.85 1568 454 & pthread_mutex_unlock libpth

164

2 W buffer_pool:buffer_poo... li

1>

Ir

‘Count - Callee

N 06 98
2.59
0.05
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

1 W do_test() (sockperf: SockFerf.cpp)
1 ® bringup(int const*) (sockpert: SockFerf.cpp, ...)
1 W exit (libc-2.17.50)
1 W set_defaults() (sockperf: SockFerf.cpp)
1 8 proc_mode_throughput(int, int, char const**) (sockperf: SockFerf.cpp)
4 d dl runtime_resclve (Id-2.17.50)
1 ® printf (libc-2.17 .50)
1 8 App:App(user_params_t const&, mutable params_t const&) (sockperf; Defs.h, ..)
1 W getenv (libc-2.17.50)
12 8 stremp_ssed?2 (libc-2.17.50)
1 = TicksBase:getCurrentTicks() (sockperf, Ticks.h, ...)
1 & get_tsc_rate_per_second() (sockperf: Ticks.cpp, ...)

-prediction

interacts with a machine's cache hierarchy and

atistics:

mispredicted

yredicted

with cg_diff to understand how your changes influences

ons and debug symbol

erent run

Dimw DLmw file:function
(%] @ getc.c: IO _getc
1 1 concord.c:get_word

vg main.c:strcmp
concord.c:hash
ctype.c:tolower

oo -
(O

- instruction read miss
data read miss,
\ — data write miss

void init_hash_table(char *file, Word_Node *table[])
0 {
. FILE *file ptr;
Word Info *data;

1 int line =1, i;

0 data = (Word_Info *) create(sizeof(Word Info));
0 for (i = @; i < TABLE_SIZE; i++)

52 table[i] = NULL;

. /* Open file, check it. */
0 file_ptr = fopen(file, "r");
if (!(file ptr)) {
fprintf(stderr, "Couldn't open '%s'.\n", file);
exit (EXIT_FAILURE);

}
0 while ((line = get word(data, line, file ptr)) != EOF)
7] insert(data->;word, data->line, table);
0 free(data);
0 fclose(file ptr);

Cachegrind-improving my app

® The line-by-line source code annotations are very useful. The best place to start is by
looking at the Ir numbers. They measure how many instructions were executed for each

line, and very useful for identifying bottlenecks.

® LL misses are typically a much bigger source of slow-downs than L1 misses. So it's worth
looking for any snippets of code with high DLmr or DLmw counts. (You can use --
show=DLmr --sort=DLmr with cg_annotate to focus just on DLmr counts). If you find any,
it's still not always easy to work out how to improve things. You need to have a
reasonable understanding of how caches work, the principles of locality, and your
program's data access patterns. Improving things may require redesigning a data

structure.

