
C++ Core Guidelines

Quick 10 minutes talk

By Shalom Kramer @kramerpeace



I.8: Prefer Ensures() for 

expressing postconditions

 assert() - but more expressive

 Postconditions of the form "this resource must be 

released" are best expressed by RAII

 Will morph into the not-yet-formulated Contract Design

void push(queue &q)
[[expects: !q.full()]]
[[Ensures: !q.empty()]]

{
...
[[assert: q->is_ok()]]

}



RAII

 Resource Acquisition Is Initiazation

class Port {

public:

Port(string p) { init(p); }

~Port() { close(); }

void init(string p);

void write();

void close();

};

void write() {

Port p("COM3");

p.write();

}

class Port {

public:

Port();

void init(string p);

void write();

void close();

};

void write() {

Port p;

p.init("COM3");

p.write();

p.close();

}



C.31: All resources acquired by a class must 

be released by the class's destructor

 Not just dynamic memory, all resources!

 Prevent leaked resources

 RAII conformity

 What happens if a resource refuses to close? - no real 

solution



C.35: A base class destructor should be either 

public and virtual, or protected and nonvirtual

 Prevent destructing only the base class without calling the 

derived class destructor

 This is really important with RAII



I.3: Avoid singletons

 Reason: Singletons are basically complicated global 

objects in disguise.

 It’s hard to destroy a singleton.

 - WeakSingleton

 What happens when singleton A uses singleton B?



CP.110: Do not write your own double-

checked locking for initialization

static std::once_flag 

my_once_flag;

std::call_once(my_once_flag, []()

{

// do this only once

});
// Assuming the compiler is compliant with C++11

static My_class my_object; // Constructor called only once



CP.111: Use a conventional pattern if you 

really need double-checked locking

mutex action_mutex;

atomic<bool> action_needed = true;

if (action_needed) {

std::lock_guard<std::mutex> lock(action_mutex);

if (action_needed) {

take_action();

action_needed = false;

}

}



Questions?


