
C++ Core Guidelines

Quick 10 minutes talk

By Shalom Kramer @kramerpeace



I.8: Prefer Ensures() for 

expressing postconditions

 assert() - but more expressive

 Postconditions of the form "this resource must be 

released" are best expressed by RAII

 Will morph into the not-yet-formulated Contract Design

void push(queue &q)
[[expects: !q.full()]]
[[Ensures: !q.empty()]]

{
...
[[assert: q->is_ok()]]

}



RAII

 Resource Acquisition Is Initiazation

class Port {

public:

Port(string p) { init(p); }

~Port() { close(); }

void init(string p);

void write();

void close();

};

void write() {

Port p("COM3");

p.write();

}

class Port {

public:

Port();

void init(string p);

void write();

void close();

};

void write() {

Port p;

p.init("COM3");

p.write();

p.close();

}



C.31: All resources acquired by a class must 

be released by the class's destructor

 Not just dynamic memory, all resources!

 Prevent leaked resources

 RAII conformity

 What happens if a resource refuses to close? - no real 

solution



C.35: A base class destructor should be either 

public and virtual, or protected and nonvirtual

 Prevent destructing only the base class without calling the 

derived class destructor

 This is really important with RAII



I.3: Avoid singletons

 Reason: Singletons are basically complicated global 

objects in disguise.

 It’s hard to destroy a singleton.

 - WeakSingleton

 What happens when singleton A uses singleton B?



CP.110: Do not write your own double-

checked locking for initialization

static std::once_flag 

my_once_flag;

std::call_once(my_once_flag, []()

{

// do this only once

});
// Assuming the compiler is compliant with C++11

static My_class my_object; // Constructor called only once



CP.111: Use a conventional pattern if you 

really need double-checked locking

mutex action_mutex;

atomic<bool> action_needed = true;

if (action_needed) {

std::lock_guard<std::mutex> lock(action_mutex);

if (action_needed) {

take_action();

action_needed = false;

}

}



Questions?


