
Spectre,
the juicy parts

Ofek, Jan 2018

Organization

• Process Isolation

• Process Isolation loopholes:
• Flush & Reload

• Branch Poisoning

• Gadgets

• Tying it together (==Spectre)

• Optional:
• Potential Mitigations

• Impact

Process Isolation

• The CPU & OS present to each process a worldview wherein it is the
only one in the world.

notepad.exe

calc.exe
“Memory at” 0x12345678

“Memory at” 0x12345678
0xbaadf00d

0x1ee71ee7

Process Isolation

• The CPU & OS present to each process a worldview wherein it is the
only one in the world.

notepad.exe

calc.exe
Virtual address
0x12345678

Virtual address
0x12345678

0xbaadf00d

0x1ee71ee7

Memory
manager

Physical address
0xabcabcab12

Physical address
0x12312312ab

A. Flush + Reload Attack
Yuval Yarom, Katrina Falkner, 2014
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

Extends on ‘Prime & Probe’ 2010 paper, and ‘Cache Games’ from 2011.

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

Process Isolation Loophole 1: Caches

• Memory hierarchy
• L1 i/d ~0.5 ns

• L2 per core ~7 ns

• L3 common ~25 ns

• RAM ~100ns

• Shared Pages
• Common DLLs are loaded at memory once, used by multiple processes.

• Tagged at the cache level too.

Flush & Reload

Basic attacker course of action:

• Load the victim DLL of interest

• For any particular address within
the DLL:
• Make sure it is out of the cache

• Access it, measure the time.

• Less than 80 ns? Just used by the
victim.

Victim
Process

Attacker
Process

DLL

Flush & Reload

• Original attack traced code execution in GPG (Gnu PrivacyGuard), an
open source RSA implementation.

“…Each occurrence of Square-Reduce-Multiply-Reduce within the
sequence corresponds to a bit whose value is 1.

Occurrences of Square-Reduce that are not followed by a Multiply
correspond to bits whose values are 0. …”

Flush & Reload

On some systems, this attack had 99% success in obtaining RSA keys

Flush + Reload

• 2017 Novelty: leak values in memory, not just address usage!

y = array2[array1[x] * 256];

• The value in x dictates the memory chunk accessed.

B. Branch Poisoning (Spectre!)
yamba ppl

Process Isolation Loophole 2:
Speculative Execution
• CPUs can’t wait, and execute ahead of time (Out Of Order).

• Naïve execution induces many such waits.

…
cmp [var], 0
jne SomeFunc
…

…
call [eax]
…

Process Isolation Loophole 2:
Speculative Execution
• Several mechanisms are in place for ‘informed guesses’ on branch

destinations.

• Mostly, this branch will be true:

• Virtual function calls (call [eax]) in a succession from the same
address, mostly direct to the same destination.

for (int i=0; i<1000; ++i)

Process Isolation Loophole 2:
Speculative Execution
• CPUs maintains ‘history caches’ to predict branch destinations and

perform speculative execution. When the branch is retired,
speculative results based on wrong guesses are dumped.

• The loopholes:
1. Branch prediction is per-processor, not per process.

A process can train a branch, and thereby direct
speculative execution on a different process.

2. Speculative execution can go where regular code can’t.
(Meltdown)

Spectre I

Suppose:

1. this victim process has a code snippet similar to:

2. The attacker can control x - via file, external parameter
etc.

if (x < array1_size)
y = array2[array1[x] * 256];

Spectre I

• Then the attacker process:
1. Trains the branch x < array1_size to be true,

2. Flushes x out of the cache.

3. Sniffs x via flush & reload.

if (x < array1_size)
y = array2[array1[x] * 256];

A CPU delay is incurred at the branch.
The statement array2[array1[x]*256] is

executed speculatively - without bounds restrictions!

C. Gadgets
Return Oriented Programming

Hovav Shacham 2007
https://cseweb.ucsd.edu/~hovav/dist/geometry.pdf

https://cseweb.ucsd.edu/~hovav/dist/geometry.pdf

Process Isolation Loophole 3:
Existing code is rich enough to do anything

• In a large enough piece of machine code, you can find
anything you want.
• The SW equivalent of a million monkeys typing for a million years.

• In particular for x86/x64 architectures: dense code.

Gadgets

Context: Return
Oriented Programming

• History:
• Stack-smashing

• DEP

Return address

Local
variables

Buffer
overflow

Malicious
code

NX

Malicious return

Gadget

• History:
• Stack-smashing

• DEP

• RoP

• More or less turing-complete
machine from gadget building
blocks.

• Code Execution exploit, of
buffer overrun vulnerability

Return address

Local
variables

Buffer
overflow

NX
Context: Return
Oriented Programming

Malicious return

Malicious return

Malicious return Gadget

Gadget

D. Tying it all together – Spectre II

Abilities thus far

1. Find gadgets to direct execution to.

2. Direct speculative execution at victim process to the gadget

3. Sniff memory value at address accessed by the victim

• Process Isolation

• Process Isolation loopholes:
• Flush & Reload

• Branch Poisoning

• Gadgets

• Tying it together (==Spectre)

• Optional:
• Potential Mitigations

• Impact

Spectre II - Toy Example Attack

1. At the victim process,
locate this gadget:

2. At joint attacker/victim
process, locate this
frequently-executed
branch:

jmp [0x00123456]

mov eax [ebx]
add 1 [eax]

3. Suppose at the branch location
ebx is some unused external
function argument.

4. Control ebx to point to a
memory location of interest.

5. At the attacker process, train the
jump to reach the gadget. It is
now executed speculatively.

6. At the attacker process, use
Flush and Reload to sniff which
address was read.

Spectre II – PoC

1. The victim gadget: the sequence of bytes
13 BC 13 BD 13 BE 13 12 17 found in ntdll.dll:

2. The victim branch:

At a point where ebx and edi contain file data and are ignored by
Sleep()

adc edi,dword ptr [ebx+edx+13BE13BDh]
adc dl,byte ptr [edi]

Sleep(0) :
jmp dword ptr ds:[76AE0078h]

Spectre II - General

1. At the victim process, find a gadget that accesses memory via the
attacker controlled registers.

2. At the victim process, find a frequently executed indirect jump:

at a site where the attacker can control some registers.

3. At the attacker process, train the jump to reach the gadget.

4. At the attacker process, use Flush and Reload to sniff the
speculative execution results.

Jmp / call eax / [eax] / [0x12345678]

Impact

• https://spectreattack.com/

https://spectreattack.com/

Mitigations

• Timer resolution

• Speculation Barrier (https://github.com/ARM-software/speculation-barrier)
• Hard on performance (image)

• Retpoline (http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180101/513630.html)

• Not really.

https://github.com/ARM-software/speculation-barrier
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180101/513630.html

Q?

