
Parasoft Proprietary and Confidential 1

29.12.2017

Static Code Analysis for C++ Applications

C++ Core Meet up 28-12-2017

Parasoft Proprietary and Confidential 2Parasoft Proprietary and Confidential 2

Agenda:

▪ Short Introduction, who am I, from where?

▪ What is Static Code Analysis?

▪ Pattern matching SCA vs Data Flow based SCA

▪ Short demo of Analysis, patteran matching
and Data Flow

Parasoft Proprietary and Confidential 3

29.12.2017

מ "מערכות תוכנה בע. אל. אס. אי
שרות מלא –מרכז מומחיות לכל האספקטים של ניתוח קוד סטאטי ובדיקות דינאמיות

מקצה לקצה
.התקנה והדרכה קורסים, יעוץ מקצועי•

אינטגרציה לתוך מערך הבדיקות והפיתוח בארגון•

פיתוח מערכי בדיקות ובדיקות ייעודיות•

של טעויות שהתגלו על ידי כלי (או יעוץ לדרכי תיקון מעשיות)יעוץ בכתיבת קוד נכון ותיקון בפועל •
.הבדיקה

.עובדים9ומעסיקה , ממוקמת ברמת גן 2005הוקמה ב •

2007מאז שנת Parasoft INCמייצגת את חברת •

לקוחות פאראסופט בישראל 170•

בורסת)פיננסים , (Covidien , Philips and GE Medical) חברות ציוד רפואי –לקוחות עיקריים •
, Broadcom)מגזר השבבים , (אלביט, תעשייה אווירית) התעשייה הביטחונית , (בנק דיסקונט , א"ת

Marvell);

Parasoft Proprietary and Confidential 4

▪ Founded in 1987, privately held

▪ Founder and CEO until 2012 Dr. Adam Kolawa from CalTech

▪ Headquarters in Monrovia, CA

▪ 22 locations and 500+ employees worldwide

▪ 80 million LOC VS 290 Developers

▪ Analyst Technical Innovator

▪ 53 US patents for software technology

▪ 17,000+ customers worldwide

▪ 85% Fortune 100 Companies

Parasoft Company Background

Parasoft Proprietary and Confidential 5

Parasoft – Market Postion

Parasoft Proprietary and Confidential 6

Parasoft Automated Tools - Overview

 Coding Standards enforcement  Data Flow analysis

 Automatic Unit testing  Auto Stub generation

 Embedded Support  Regression Test

 Security Testing  Code /Test Coverage

 Coding Standards enforcement  Data Flow analysis

 Automatic Unit testing  Security Testing

 Realistic auto gen functional tests  Auto Stub generation

 Regression Testing  Test Coverage

 Coding Standard Enforcement  Data Flow analysis

 Automatic Unit testing  Security Testing

 Realistic auto gen functional test  Auto Stub generation

 Regression test  Test Coverage

Automated Runtime Memory Defect Detection for C/C++

 End to End Testing  Security Testing

 Web Application Testing  Regression Testing

 Functional/Integration Testing  Policy Enforcement

 Application Behavior Virtualization  Load Testing

 Application Behavior Virtualization

 Development/test environment management

Ensures the security reliability and performance of enterprise-grade mobile applications.

Decision Support Mechanism- Visibility, Control and Management of SDLC

Parasoft Proprietary and Confidential 7

What is it “Static Code Anlysis” and what is it used for?

Static program analysis is the analysis of computer

software that is performed without actually

executing programs.

In most cases the analysis is performed on some

version of the source code and in the other cases

some form of the object code. ...

Parasoft Proprietary and Confidential 8

8

Static analyzers: General form

Static

Analyser

Document

Eg. Source code: .C.CPP .H .CC ,CS etc..

➢ Syntax violation

➢ Coding Standards

Deviation

➢ Data flow info

➢ Control flow info

➢ Defects

➢ Errors

➢ Bugs

Parasoft Proprietary and Confidential 9Parasoft Proprietary and Confidential 9

Static Code Analysis is an
Automatic code review tool!

Usually performed during coding (recommended) or after the coding

finished (after compilation, after integration build)

Serves same goals as code review

• Excellent for enforcing compliance to standards

• Helps to eliminate certain bugs

• Helps to identify certain design/implementation flaws

• Provides certain educational value

Parasoft Proprietary and Confidential 10

In simple words…..

▪ It is an advanced and easy to use “debug tool”

▪ It is a Coding Standards Enforcer

▪

▪ It is a programmers training tool

▪ It is the only viable way to expose Data Flow related coding

defects

▪ It is a modern and automated way of doing what we

always did manually for finding bugs and ensuring source

code quality…..

Parasoft Proprietary and Confidential 11Parasoft Proprietary and Confidential 11

How we did things in the past and how today

Parasoft Proprietary and Confidential 12Parasoft Proprietary and Confidential 12

Impact (benefit) of Static Anlysis is high

0

20000

40000

60000

80000

100000

120000

140000

1M 2M 3M 4M 5M 6M 7M 9M 10M

Lines of code

D
ef

ec
ts

Without Static Analysis

With Static Analysis

Source: Capers Jones, Software Productivity Group, Inc.

Static Analysis may reduce defects by a factor of 6!

Parasoft Proprietary and Confidential 13Parasoft Proprietary and Confidential 13

Parasoft Test: 3x Static Analysis

▪ Pattern-Based Static Analysis
▪ Increases productivity by preventing errors
▪ Extensive breadth of rules

▪ 2300 for C/ C++
▪ Over 1,000 for Java
▪ Over 700 for .NET

▪ Parasoft Test rule quality based on over 20 years of research
▪ No false positives / No False Negative
▪ Depth of analysis

▪ Graphical interface for custom rule creation and customization
▪ Extensive security Rulesets for (PCI, OWASP, Sun Java Security…

▪ Flow-Based Static Analysis
▪ Finds bugs
▪ Deep, multi-file path analysis
▪ Very low false positives

▪ Metrics Analysis
▪ Finds complex code prone to errors
▪ Directly pinpoints areas of code/application prone to errors
▪ Large breadth of metrics available

Parasoft Proprietary and Confidential 14Parasoft Proprietary and Confidential 14

Pattern Matching issue

▪ Prefer lambdas over std::bind, std::bind1st and std::bind2nd
[CODSTA-MCPP-07-2]

▪ Scott Meyers, "Effective Modern C++, 42 specific ways to improve your use

of C++11 and C++14", O'Reilly Media, Inc., Copyright 2015,

Chapter 6: "Lambda Expressions", Item 34: "Prefer lambdas to std::bind“

(Since C++17, std::bind1st and std::bind2nd are removed from the Standard)

Why?
This rule detects when 'std::bind', 'std::bind1st' or 'std::bind2nd' are used in
code.

Older versions of the Standard used 'std::bind', 'std::bind1st' or 'std::bind2nd'.
C++11 allows you to use lambda expressions that are more readable, more
expressive and make your code easier to optimize. In C++11, lambda
expressions cannot replace polymorphic function objects and they do not
offer move capture. However, C++14 introduces polymorphic lambda
expressions, as well as generalized lambda capture, which enables you to
replace 'bind' in all cases.

Parasoft Proprietary and Confidential 15Parasoft Proprietary and Confidential 15

Pattern Matching issue

Parasoft Proprietary and Confidential 16Parasoft Proprietary and Confidential 16

Exceptions to the rule?
EXCEPTIONS The rule does not report a violation when a lambda is passed to 'std::bind' as an argument. This may happen when move capture is

Parasoft Proprietary and Confidential 17Parasoft Proprietary and Confidential 17

Rules Wizard

Parasoft Proprietary and Confidential 18Parasoft Proprietary and Confidential 18

Pattern Matching issue

Parasoft Proprietary and Confidential 19Parasoft Proprietary and Confidential 19

▪ There is One thing the Code Review hardly can do….

▪ Inter procedural Crash Causing Defects

the Solution:

Data Flow Analysis

Parasoft Proprietary and Confidential 20Parasoft Proprietary and Confidential 20

What Can be found with Data Flow Analysis ?

Null pointer dereference
Use after free
Double free
Array indexing errors
Mismatched array

new/delete
Potential stack overrun
Potential heap overrun
Return pointers to local

variables
Logically inconsistent code

Uninitialized variables
Invalid use of negative

values
passing large parameters

by value
Under allocations of

dynamic data
Memory leaks
File handle leaks
Network resource leaks
Unused values
Unhandled return codes

Parasoft Proprietary and Confidential 21Parasoft Proprietary and Confidential 21

C++test – Bug Detective
Data Flow Analysis

How does it work?

21236800 - Parasoft® C++test by Alon Bialik

Parasoft Proprietary and Confidential 22

3d Generation SCA tools – 2006 – to present,

int a, b;

a = 2;

b = a*2 + 1;

SET R1,2

STORE #0,R1

SHIFT R1,1

STORE #1,R1

ADD R1,1

STORE #2,R1

source code

target code

Parasoft Proprietary and Confidential 23Parasoft Proprietary and Confidential 23

Compiler components
Character Stream

Lexical Analyzer

Token Stream

Syntax Analyzer

Syntax Tree

Semantic Analyzer

Decorated Syntax Tree

Machine-Independent

Code Optimization

Intermediate

Representation

Code Generator

Target Machine Code

Machine-Dependent

Code Optimization
Intermediate Code Generator

Intermediate

Representation

Target Machine Code

Parasoft Proprietary and Confidential 24Parasoft Proprietary and Confidential 24

An accurate representation of a software
system based on understanding all
operations that the build system performs
as well as an authentic compilation of
every source file in that build system.

Software DNA Map enables static code
analysis to overcome its previous
limitations of excessive false positives and
deliver accurate results that developers
can put to immediate use.

Software DNA Map

Parasoft Proprietary and Confidential 25Parasoft Proprietary and Confidential 25
25

Comprehensive: Bit-Accurate

▪ Bit-accurate representation of the data and logic of the software system allows SAT
solvers to explore all possible values

▪ Enables integer overflow detection and optimal false path pruning

Control Flow Bit-Accurate Representation

Parasoft Proprietary and Confidential 26

Example of a Control Flow Graph

1. d:=0;

2. while (x<y) {

3. x:=x+3;

4. if (x+y < 100)

5. s:=s+x+y;

6. else

7. s:=s+x-y;

8. }

2

1

3

4’

7

4

5

8
26

Parasoft Proprietary and Confidential 27Parasoft Proprietary and Confidential 27

Take the expression A==19 (A is a 8 bit char) ,
DNA mapping will convert it to :

! a 7 ^ ! a 6 ^ ! a 5 ^ a 4 ^ ! a 3 ^ ! a 2 ^ a 1 ^ a 0

(a7 is the high bit)
 Plugging this into a SAT Solver would render the following assignment

of variables for the formula to be satisfied:
 a 0 = True . (1) a 1 = True . (1) a 2 = False (0). a 3 = False (0). a 4 = True (1). a 5 = False

(0). a 6 = False (0) a7 = False (0)
 We got 00010011 =19

 Once the entire Software DNA Map is represented in this format of
TRUES, FALSES, NOTS, ANDS, and

 ORS, a wide variety of formulas can be constructed from this
representation and SAT solvers can be applied to analyze the code for
additional, more sophisticated quality and security problems. It is this
bit-accurate representation of the software that enables more precise
static analysis than previously was possible based solely on path
simulation.

Boolean Satisfiability (SAT Solver) using
the DNA map

Parasoft Proprietary and Confidential 28Parasoft Proprietary and Confidential 28

Path Simulation

 There are clearly four paths through this code base (a-b-d-e-g, a-c-
d-e-g, a-b-d-f-g, a-c-d-f-g).

G

E(t)

F(f)

D

B(t)

C(f)

A

Parasoft Proprietary and Confidential 29Parasoft Proprietary and Confidential 29

Path Simulation , enter the SAT solver

 Let’s assume we have the following expressions

 [a] : i f (x = = 0) [d] : i f (x ! = 0)

G

E(t)

F(f)

D

B(t)

C(f)

A

Parasoft Proprietary and Confidential 30Parasoft Proprietary and Confidential 30

The SAT Solver

 The SAT solver see “x = = 0 AND x ! = 0”

 The SAT solver says “this cannot be satisfied boolianly”

 while there might appear to be 4 paths through the control flow graph, we know

that because of the dependency between the condition of (a) and condition of (d),

there are only 2 paths through the code base.

 If the analysis decides to explore the path a-b-d-e-g, this would be The SAT

solver see “x = = 0 AND x ! = 0”

 The SAT solver says “this cannot be satisfied boolianly”

 while there might appear to be 4 paths through the control flow graph, we know

that because of the dependency between the condition of (a) and condition of (d),

there are only 2 paths through the code base. If the analysis decides to explore

the path a-b-d-e-g, this would be a FALSE path because it’s impossible to

execute at runtime. Moreover, if the analysis reported a defect on this path, that

defect would clearly be a false positive since that path cannot exist when running

the program.

 a FALSE path because it’s impossible to execute at runtime. Moreover, if the

analysis reported a defect on this path, that defect would clearly be a false

positive since that path cannot exist when running the program.

Parasoft Proprietary and Confidential 31Parasoft Proprietary and Confidential 31

10-Mar-05 31

False Positive Problem: False Errors

▪ false error: reported by analyzer but not
in fact a latent error in program

1 int f(int x) {

2 int y;

3 if (x > 0) y = x;

4 if (x > 3) x = y;

5 return x;

6 }

3

4

6

(x ≤ 0)(x > 0)

y = x

5

(x ≤ 3)(x > 3)

x = y

return x

Warning 644:

Variable 'y' (line 2) may not have been

initialized

(x ≤ 0)

(x > 3)

Parasoft Proprietary and Confidential 32Parasoft Proprietary and Confidential 32

f.h

1 int f(int x) {

2 int y;

3 if (x > 0) y = x;

4 else;

5 y++;

6 return x;

7 }
f.c

1 #include <f.h>

2 void main (void)

3 f(1); //No Violation

4 Do something…...

5 f(-1);//Violation
6 }

Parasoft Proprietary and Confidential 33

Typical Defect….

void buffer_size_example()

{

char dest[128]; char source[256]; strncpy(dest,

source, strlen(source));

}
// This will flag an error as the size argument to strncpy() // can

possibly be up to 255, yet the destination only has // room for 128

elements (127 chars and the null termination).

But it is never that obvious….

Parasoft Proprietary and Confidential 34

Buffer overrun

Or even looking remotely like that….

void func (char *passedStr)

{

char localStr[4];

strcpy(localStr, passedStr); // length of passedStr is not
checked

}

int main (int argc, char **argv)

{

func(argv[1]);

}

Parasoft Proprietary and Confidential 35

It can look like that….. History in the making

The code that made the iPhone what it is…

The LIBTIFF VULNERABILITY

static int

TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)

{

switch (dir->tdir_type) {

case TIFF_BYTE:

case TIFF_SBYTE:

{

uint8 v[4];

return TIFFFetchByteArray(tif, dir, v)

&& TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);
}

case TIFF_SHORT:

case TIFF_SSHORT:

{

uint16 v[2];

return TIFFFetchShortArray(tif, dir, v)

&& TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);

}

default:

return 0;

}

}

Parasoft Proprietary and Confidential 36

Live Demo!

תודה על ההקשבה

' דני לייזרוביץ

