15l PARASOFT

Static Code Analysis for C++ Applications

C++ Core Meet up 28-12-2017

rJ E S L 29.12.2017

Englneerlng Software Lab
11111111111111111111 P minn7 Y78 1IN0

Agenda: = PARASOFT.

= Short Introduction, who am |, from where?
= What is Static Code Analysis?
= Pattern matching SCA vs Data Flow based SCA

= Short demo of Analysis, patteran matching
and Data Flow

WOLFRAM

COMPUTATION MEETS KENOWLEDGE

¢

15l PARASOFT

n'"'ya Nn1dIin NNIyYn .YX .OX .'N

NN NINY — NIMRK'T NIRYTAL'ORVO TIZ NINY 7Y D'0PO0KRN 707 NI'NNIN 1™DIN
nX[77 N¥N

23 "T' 7Y 17aNNY NYO 7Y (NI'wyn 17N 'DAT? YIV' IR) V192 (1! 122 TI7 D22 YIv!
N7 1aN

.0'1a1y 9 njP'ovni , |a nn12 Nnpimn 2005 2 nnpin

2007 nmiw txn Parasoft INC nnhan nx nax'n

7N USIORIND NINIR? 170

nonn) n'on's ,(Covidien , Philips and GE Medical) 'xi191 TI'Y nnan — 0™y NiNigY?
, Broadcom) n1awn 2tan , (017X ,NMUIR DMWY) NIINLVAN AYWYNN L(VIIRO'T 722 ,X'N
; (Marvell

erTES L oo 29.12.2017

Engineering Software Lab
NI'ANXY'T NI*T21 "DXDO T N7 *7Xw 1700

Parasoft Company Background = PARASOFT.

*= Founded in 1987, privately held
= Founder and CEO until 2012 Dr. Adam Kolawa from CalTech

P A .

= Headquarters in Monrovia, CA
qu | NET1_
= 22 locations and 500+ employees worldwide
. THALES
= 80 million LOC VS 290 Developers
= Analyst Technical Innovator ==

| FLI]ITSU

= 53 US patents for software technology %
= 17,000+ customers worldwide [ﬁ I

= 85% Fortune 100 Companies

L7STR/ATA
il [5
@ Standard = FNB

I@ Disccivery First Mational Bank

SITAZY [EETN AAMPSA wavener
Parasoft Proprietary and Confidential

Parasoft — Market Postion 5l PARASOFT.

Figure 4 Forrester Wave™: Modern Application Functional Test Automation, Q2 ‘15

Risky Strong
Bets Contenders Performers Leaders
Strong S—————_
A X The Forrester Wave'

I't data for smart decsions

(-) Parasoft Go to Forrester.com to
IBMQ download the Forrester
Wave tool for more
detailed product
evaluations, feature

Tricentis@ @ OBodand comparisons, and

CA Technologies customizable rankings.
Current
offering SmartBear @ Microsoft
TestPlant ()

Market presence

©000)
&
Weak %%
Parasoft Proprietary and Confidential 5

Parasoft Automated Tools - Overview

* Coding Standards enforcement * Data Flow analysis

Insure++

HPARASOFT. e Automatic Unit testing * Auto Stub generation
™ .
* Embedded Support * Regression Test
(++test dded Supp :
* Security Testing * Code /Test Coverage
* Coding Standards enforcement * Data Flow analysis
EPARASOFT. « Automatic Unit testing * Security Testing
% TEST * Realistic auto gen functional tests * Auto Stub generation
* Regression Testing * Test Coverage
 PARASOFT. * Coding S-tand.ard Ehforcement * Data Elow anz?lly3|s
- * Automatic Unit testing * Security Testing
_’ tESt * Realistic auto gen functional test * Auto Stub generation
* Regression test * Test Coverage
EPARASOFT

Automated Runtime Memory Defect Detection for C/C++

* End to End Testing * Security Testing

B Parasoft AEF Tech

ELPARASOFT. * Web Application Testing * Regression Testing
SOA test * Functional/Integration Testing * Policy Enforcement
* Application Behavior Virtualization * Load Testing
FPARASOFT) * Application Behavior Virtualization
Virtualize + Development/test environment management
MObile Test Ensures the security reliability and performance of enterprise-grade mobile applications.
anferta" Decision Support Mechanism- Visibility, Control and Management of SDLC

Parasoft Proprietary and Confidential

5 PARASOFT

5 PARASOFT

What is it “Static Code Anlysis” and what is it used for?

Static program analysis Is the analysis of computer
software that is performed without actually
executing programs.

In most cases the analysis Is performed on some
version of the source code and in the other cases
some form of the object code. ...

5 PARASOFT

» Syntax violation
Coding Standards
Deviation

Data flow info
Control flow info
Defects

Errors

Bugs

.—»_—»

Document
Eg. Source code: .C.CPP .H .CC ,CS etc..

Y VY

YVVYYVY

Parasoft Proprietary and Confidential

5 PARASOFT

Static Code Analysis is an
Automatic code review tool!

Usually performed during coding (recommended) or after the coding
finished (after compilation, after integration build)

Serves same goals as code review
» Excellent for enforcing compliance to standards

» Helps to eliminate certain bugs

» Helps to identify certain design/implementation flaws

* Provides certain educational value

Parasoft Proprietary and Confidential

5 PARASOFT

In simple words.....

= |tis an advanced and easy to use “debug tool”
= |tis a Coding Standards Enforcer
= |tis a programmers training tool

= [tis the only viable way to expose Data Flow related coding
defects

= |tisa modern and automated way of doing what we
always did manually for finding bugs and ensuring source
code quality.....

Parasoft Proprietary and Confidential

How we did things in the past and how today =l PARASOFT

Parasoft Proprietary and Confidential

Impact (benefit) of Static Anlysis is high L PARASOFT

140000
120000 - Without Static Analysis
___With Static Analysis
100000
80000
g
o 60000
[<5] —
a
40000
20000 |
« =
4
-t
0 —Il/ _I—I/ | | | | T T
M 2M 3M 4M 5M 6M ™ IM 10M

Static Analysis may reduce defects by a factor of 6! Lines of code

Source: Capers Jones, Software Productivity Group, Inc.

Parasoft Proprietary and Confidential

Parasoft Test: 3x Static Analysis = PARASOFT

= Pattern-Based Static Analysis
= Increases productivity by preventing errors

= Extensive breadth of rules
2300 for C/ C++
Over 1,000 for Java
Over 700 for .NET

= Parasoft Test rule quality based on over 20 years of research

Depth of analysis
= Graphical interface for custom rule creation and customization
= Extensive security Rulesets for (PCl, OWASP, Sun Java Security...

* Flow-Based Static Analysis
= Finds bugs
= Deep, multi-file path analysis

= Metrics Analysis
* Finds complex code prone to errors
= Directly pinpoints areas of code/application prone to errors
= Large breadth of metrics available

Parasoft Proprietary and Confidential

Pattern Matching issue =L PARASOFT.

= Prefer lambdas over std::bind, std::bind1st and std::bind2nd
[CODSTA-MCPP-07-2]
= Scott Meyers, "Effective Modern C++, 42 specific ways to improve your use
of C++11 and C++14", O'Reilly Media, Inc., Copyright 2015,
Chapter 6: "Lambda Expressions”, Iltem 34: "Prefer lambdas to std::bind“
(Since C++17, std::bind1st and std::bind2nd are removed from the Standard)

Why?

This rule detects when 'std::bind’, 'std::bind1st' or 'std::bind2nd' are used in
code.

Older versions of the Standard used 'std::bind’, 'std::bind1st' or 'std::bind2nd'.
C++11 allows you to use lambda expressions that are more readable, more
expressive and make your code easier to optimize. In C++11, lambda
expressions cannot replace polymorphic function objects and they do not
offer move capture. However, C++14 introduces polymorphic lambda
expressions, as well as generalized lambda capture, which enables you to
replace 'bind' in all cases.

Parasoft Proprietary and Confidential

Pattern Matching issue = PARASOFT.

EXAMPLE

#include <functional>
int f_a(int a, int b);

template <typename T> void ft(T t)

{
int a;
t(a);
}
void foo(void)
{
auto fn = std::bind(f_a, 18, std::placeholders:: _1); // Violation
int a = 1@;
ft(std::bind(f_a, a, std::placeholders::_1)); // Violation

Parasoft Proprietary and Confidential

Exceptions to the rule? = PARASOFT.

EXCEPTIONS

The rule does not report a violation when a lambda is passed to 'std::bind’

as an argument. This may happen when move capture is not available(in C++11).
For example:

std::bind([] (int a) {}, 10);

Parasoft Proprietary and Confidential

Rules Wizard = PARASOFT.

Bod IInCOutputScope
[Tranzlatin:un Uit |xor}< = ¥ M andle 'f'l_ a
ile

Left Hand Side p— (Mame \|
Global Function | (bind|bind 15t |hind2nd)4 |
@ Cuun

e $:=-III

(Filerarne

~[functional |functional', b | xfunctional |
wfunctional.b|_function|_function, b
st_function |st_function’,.b|
functional_iterate |functional_iterate’.h|
binders |bindersy b xxbind1 | xxbind1Y.H0%

p— Type d (IsLambdacll:usureCIass\]

rand
S U S Y e
Templatelnstances wd Body d Left Hand Side g (Marne \|
L
Functions alb) Global Function L’\(hindlhindlstlhindznd $J
O{e [
& g0,

Filenarme

~(functional |functional b | xfunctional |
wfunctional.b|_function|_function.b|
stl_function | st_function’,.b|
functional_iterate | functional_iterate’,h|
binders |bindersy, b xxbind1 | xxhind 1,004

' @ Argurnents —rd Type o (ISLEII‘I‘IbdaCh:ISurEGaSS\I
Argurnent Class L T J

Parasoft Proprietary and Confidential

Pattern Matching issue = PARASOFT.

REPAIR

#include <functional>
int f_a(int a, int b);

template <typename T> void ft(T t)

{
int a;
t(a);
}
void foo(void)
{
auto 1 f1 = [](int a){ return f_a(1@, a); }; // 0K
int a = 10;
ft([a](int b){ return f_a(a, b); }); // OK

Parasoft Proprietary and Confidential

5 PARASOFT

" There is One thing the Code Review hardly can do....
" |nter procedural Crash Causing Defects

the Solution:

Data Flow Analysis

Parasoft Proprietary and Confidentia

What Can be found with Data Flow Analysis ? L PARASOFT.

ONull pointer dereference
OUse after free

ODouble free

OArray indexing errors

O Mismatched array
new/delete

O Potential stack overrun
OPotential heap overrun

OReturn pointers to local
variables

O Logically inconsistent code

OUninitialized variables

Olnvalid use of negative
values

Opassing large parameters
by value

OUnder allocations of
dynamic data

OMemory leaks

OFile handle leaks
ONetwork resource leaks
OUnused values
OUnhandled return codes

Parasoft Proprietary and Confidential

5 PARASOFT

C++test — Bug Detective
Data Flow Analysis

How does it work?

Parasoft Proprietary and Confidential

5 PARASOFT

3d Generation SCA tools — 2006 — to present,

source code

int a, b;
a = 2;
b=a*2 + 1;

target code

SET R1,2
STORE #0,R1
SHIFT R1,1
STORE #1,R1
ADD R1,1
STORE #2,R1

Parasoft Proprietary and Confidential

= PARASOFT
Compiler components

Charactejr Stream

Intermediate
Lexical Analyzer Representation
| Machine-Independent
Token lStream | Code Optimization
Syntax Analyzer Intermidiate
Representation

Syntax Tree

Code Generator

Semantic| Analyzer

Target Ma%nine Code

Machine-Dependent

Decorated %yntax Tree
Code Optimization

Intermediate Pode Generator

Target Machine Code

Parasoft Proprietary and Confidential

Software DNA Map = PARASOFT.

OAn accurate representation of a software
system based on understanding all
operations that the build system performs
as well as an authentic compilation of
every source file in that build system.

OSoftware DNA Map enables static code
analysis to overcome its previous
limitations of excessive false positives and
deliver accurate results that developers
can put to immediate use.

Comprehensive: Bit-Accurate

5 PARASOFT

solvers to explore all possible values

Bit-accurate representation of the data and logic of the software system allows SAT

Enables integer overflow detection and optimal false path pruning

Control Flow ‘ Bit-Accurate Representation

’4 R
/ TRUE FALSE
i S
// TRUE FALSE
-5 78
test (x,2) / / l
/
l/ f’ —
BACK ‘ / LS
/ / FALSE TRUE

/ _f e N\

// ~.
£ BACK —— BACK —

Parasoft Proprietary and Confidential

»C =NOT

D)
D D
D D
D -)
D)
= AND) D =oR

Example of a Control Flow Graph 2l PARASOFT

1. d:=0;

2.

3. X:=

4.

5. S

6. else
7. S:
8. }

Parasoft Proprietary and Confidential

Boolean Satisfiability (SAT Solver) using
the DNA map

OTake the expression A==19 (A is a 8 bit char) ,
ODNA mapping will convert it to :

a7 ~laé ~'!la5 ~Na4 ~Nla3 Ala2 ~Nral ~a0
(a7 is the high bit)
O Plugging this into a SAT Solver would render the following assignment

of variables for the formula to be satisfied:

O a0 =True.(1)al =True.(1)a2 = False (0).a3 = False(0).a4 = True (1).a5 = False
(0).a6 = False (0)a7 = False (0)

O We got 00010011 =19

O Once the entire Software DNA Map is represented in this format of
TRUES, FALSES, NOTS, ANDS, and

O ORS, a wide variety of formulas can be constructed from this
representation and SAT solvers can be applied to analyze the code for
additional, more sophisticated quality and security problems. It is this
bit-accurate representation of the software that enables more precise
static analysis than previously was possible based solely on path
simulation.

Parasoft Proprietary and Confidential

Path Simulation = PARASOFT.

O There are clearly four paths through this code base (a-b-d-e-g, a-c-

d-e-g, a-b-d-f-g, a-c-d-f-g).

Parasoft Proprietary and Confidential

Path Simulation , enter the SAT solver I PARASOFT

O Let’s assume we have the following expressions
Ofa]:if(x==0)[d]:if (x!=0)

Parasoft Proprietary and Confidential

The SAT Solver = PARASOFT.

O The SAT solver see “x== 0 AND x != 0”

O The SAT solver says “this cannot be satisfied boolianly”

O while there might appear to be 4 paths through the control flow graph, we know
that because of the dependency between the condition of (a) and condition of (d),
there are only 2 paths through the code base.

O |If the analysis decides to explore the path a-b-d-e-g, this would be The SAT

solver see “x== 0 AND x !=0”

The SAT solver says “this cannot be satisfied boolianly”

while there might appear to be 4 paths through the control flow graph, we know

that because of the dependency between the condition of (a) and condition of (d),

there are only 2 paths through the code base. If the analysis decides to explore

the path a-b-d-e-g, this would be a FALSE path because it’s impossible to
execute at runtime. Moreover, if the analysis reported a defect on this path, that
defect would clearly be a false positive since that path cannot exist when running
the program.

o)
O

O a FALSE path because it’s impossible to execute at runtime. Moreover, if the
analysis reported a defect on this path, that defect would clearly be a false
positive since that path cannot exist when running the program.

Parasoft Proprietary and Confidential

False Positive Problem: False Errors 15l PARASOFT.

" false error: reported by analyzer but not
in fact a latent error in program

1 int f(int x) { (x > 0) < 0)
2 int y;

3 if (x > 0) y = x; -

4 if (x > 3) YT

5 return x; (x > 3 < 3)
6 }

return x

Variable 'y

initialize

10-Mar-05

Parasoft Proprietary and Confidential

5 PARASOFT

f.h
int £(int x) {
int y;
if (x > 0) vy = x;
else;
y++;
return x;

}

/

f.c
#include <f.h>
void main (void)
£(1); //No Violation
Do something... ..

£(-1);//Violation

SNSoon bk WDN PR

o U1 d WDN PR

Parasoft Proprietary and Confidential

Typical Defect.... = PARASOFT

void buffer_size example()

{

char dest[128]; char source[256]; strncpy(dest,
source, strlen(source));

}

// This will flag an error as the size argument to strncpy() // can
possibly be up to 255, yet the destination only has // room for 128
elements (127 chars and the null termination).

But it is never that obvious....

Parasoft Proprietary and Confidential

Buffer overrun] PARASOFT.

Or even looking remotely like that....
void func (char *passedStr)

{
char localStr[4];

strcpy(localStr, passedStr); // length of passedStr is not
checked

}

iInt main (int argc, char **argv)

{
func(argv[l]);

}

It can look like that..... History in the making

5 PARASOFT

The code that made the IPhone what 1t is...
The LIBTIFF VULNERABILITY

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry™* dir)

{

switch (dir->tdir_type) {
case TIFF_BYTE:

case TIFF_SBYTE:

{

uint8 v[4];

return TIFFFetchByteArray(tif, dir, v)

&& TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);
}

case TIFF_SHORT:

case TIFF_SSHORT:
{

uintl6é v[2];

return TIFFFetchShortArray(tif, dir, v)

&& TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);
}

default:

return O;

¥
¥

Parasoft Proprietary and Confidential

L 1Ive Demo! ! PARASOFT

w Sensor - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = =1
FLE EDIT VIEW PROJECT BUILD DE .:@ Traia s weeT amiaiiee s aeiA ma
. il Test Configurations = O X
- B - - - w F T % K X A F s s
o Test Corfigurations:
g Solution Explorer = |
a . Fter[|| Name [CATH_1_FDACs+Phase2 5
2 oo@ e-2dlm o s@™ o
=l .) i dotTEST Parert Dis
o Search Solution Explorer (Ctrl+;) g G Userdefined
m 3 b3 0 . . .
N & Solution 'Sensor' (1 project) &> Buittin &2 Scope @ Static 3% Generstion - Execution F2 Code Review & Common ~8) Goals
3 |4 [l Sensor B g Team Enable Static Analysis ~
g ﬁ External Dependencies E---@Cﬂtest . Limit maimum number of tasks reported per nule to: |1ﬂ4}D Examples\2912\Sensor'\80ur'{
4 &g] Header Files B 8> Userdefined [] Do not apply suppressions
B Sourceh : [Application Monitoring L] Arsyae fles wih
= i ; alyze files Erse emors
ﬁ Resource Files 2= S,IEmC Analysis 2
4 & SourceFiles | TE CA R Rules Tree Metrics BugDetective Options
----- - Dani_1
++ sensor.c o =
bR 1 150 26262 Recomme Fier | |C &
----- BugDetective A
_____ E E‘P:gm oo % Numberof es: 1,868 total; 149 enabled: 0 hidden
..... T OWTASP Top 10 Sec El-[Fl BugDetective {License Required) [BD] - (16/26 enabled) ~ Hide Dizabled
..... ﬁ- Parasoft's Recommer O Miscellaneous [BD-MISC] - (041 enabled) .
..... {f Parasoft's Recommer D% Always close transactions [BD-MISC-TRANS - 1] £l
..... F XYZ-1 [l Possible Bugs [BD-PB] - (10/11 enabled) New
..... ﬁ- ywlyygUYaUy Awvoid accessing amays out of bounds [BD-PB-ARRAY - 1]
&[5 Unit Testing Awoid use before initiglization [BO-PB-NOTINIT - 1] Import
..... ﬁ- Example Corfiguration % ﬂ\ro?d null pointer dereferencing .[B.D-I.’B-NP -1] B Reload)
..... ﬁ.' New Corfiguration % Awvoid buffer overflow due to defining incomect format limits [ED-PB-
Output - Bl g Buitin % Avoid overflow due to reading a not zero terminated string [BD-PB4 Edit Rulemap
Show output from: - lg% Team @ Avoid overflow when reading from a buffer [BD-PE-OVERFRD - 1] -
@ Avoid overflow when wiiting to a buffer [BD-PB-OVERFWR - 1] Printable Docs
% Avoid division by zero [BD-PB-ZERO - 1]
""" D% Avoid conditions that always evaluate to the same value [BD-PEC
% Do not check for null after dereferencing [ED-PE-DEREF - 2] A
< > w
< >
New Delete Aop
Run Test Close
Error List Quality Tasks Test Progress Coverage Output Find Results 1
eadv n g9 X h

Parasoft Proprietary and Confidential

7AWPIT Yy 7N

YNt T

